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Every programmer can perform data analysis by describing models as
programs and key operations (inference and gradient) computations are
delegated to compiler.

Probabilistic programming languages

BUGS (Spiegelhalter et al. 1995), BLOG (Milch et al. 2005), Church (Goodman
et al. 2008), WebPPL (Goodman et al. 2014), Venture (Mansinghka et al. 2014),
Anglican (Wood et al. 2015), Stan (Stan Development Team 2014), Hakaru
(Narayanan et al., 2016) BayesDB (Mansinghka et al. 2017), Edward (Tran et
al.Tran et al. 2017), Birch (Murray et al. 2018), Turing (Ge et al. 2018), Gen
(Cusumano-Towner et al. 2019), Pyro (Bingham et al. 2019), . . .

Differential programming languages

Theano (Bergstra et al. 2010), Tensorflow 1.0 (Abadi et al. 2016, Yu et al.2018),
Tangent (van Merrienboer et al. 2018), Autograd (Maclaurin et al. 2015),
TensorFlow Eager Mode (Shankar and Dobson 2017), Chainer (Tokui 2018),
PyTorch (PyTorch 2018), and JAX (Frostig et al. 2018), . . .
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https://arxiv.org/pdf/1206.3255v2.pdf
http://webppl.org/
http://probcomp.csail.mit.edu/software/venture/
https://mc-stan.org/
https://probprog.github.io/anglican/index.html
http://probcomp.csail.mit.edu/software/bayesdb/
https://birch-lang.org/
http://probcomp.csail.mit.edu/software/gen/


Probabilistic Programming

Bayesian Inference



Sampling

Idea: How to model probability distributions by programs

1 de f p l i n k o ( n ) :
2 i f ( n==0) :
3 r e t u r n 0
4 e l s e :
5 i f c o i n ( ) :
6 r e t u r n p l i n k o (n−1)+1
7 e l s e :
8 r e t u r n p l i n k o (n−1)−1

By Matemateca (IME USP)
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Idea: How to model probability distributions by programs
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What is Bayesian Inference

Gender Bias (Laplace): Paris, from 1745 to 1770
f 0 = 241 945 females out of B0 = 493 472 births (49%).

What is the probability to be born female ?

• female births are independent and follow the same law with bias θ
• the probability to get f females out of B births is

P(f |θ,B) =
(

B
f

)
θf (1− θ)B−f

Novelty: the bias θ to be born female follows a probabilistic distribution.
Inference paradigm: what is the law of θ conditioned on f and B?

• Sample θ from a postulated distribution π (prior)
• Simulate data f from the outcome θ (likelihood)
• Infer the distribution of θ (posterior) by Bayes Law

P(θ | f ,B) = P(f | θ,B) π(θ)∫
θ

P(f | θ,B) π(θ) = α · P(f | θ,B) π(θ)
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Conditioning and inference

1 # model
2 de f f B i r t h ( theta , B) :
3 i f (B == 0) :
4 r e t u r n 0
5 e l s e :
6 f = f l i p ( t h e t a )
7 r e t u r n f + f B i r t h ( theta , B−1)
8

9 # paramete r ( p r i o r )
10 t h e t a = un i fo rm (0 , 1 )
11

12 # data 1747 − 1783
13 f 0 = 241 945
14 B0 = 493 472
15

16 # i n f e r e n c e ( p o s t e r i o r )
17 i n f e r ( fB i r t h , theta , f0 , B0)

Idea: adjust theta distribution by comparison to data by simulation. 4



Inference by rejection sampling

1 # p r i o r : Un i t −> S
2 de f g u e s s e r ( ) :
3 sample ( un i fo rm (0 , 1 ) )
4

5 # p r e d i c a t e : i n t x i n t −> (S −> Boolean )
6 de f checke r ( f0 , B0) :
7 lambda th e t a : gB i r t h ( theta , B0) == f0
8

9 # i n f e r : ( Un i t −> S) −> (S −> Boolean ) −> S
10 de f r e j e c t i o n ( gue s s e r , ch e cke r ( f0 , B0) ) :
11 t h e t a = gu e s s e r ( )
12 i f c h e cke r ( f0 , B0) ( t h e t a ) :
13 r e t u r n t h e t a
14 e l s e :
15 r e j e c t i o n ( gue s s e r , ch e cke r ( f0 , B0) )

Problem: inefficient, hence other approximated methods
5



Inference by Metropolis-Hasting

Infer θ by Bayes Law: P(θ | f ,B) = α · P(f | θ,B) π(θ)

1 # pr opo r t i o n : S x S −> f l o a t
2 de f p r o p o r t i o n ( x , y ) :
3 r e t u r n P( f | x , B0) / P( f | y , B0)
4

5 # Met ropo l i s−Hast ing : i n t ∗ i n t ∗ i n t −> S
6 de f me t r o p o l i s ( n , f0 , B0) :
7 i f ( n=0) :
8 r e t u r n f0 /B0
9 e l s e :
10 x = me t r o p o l i s ( n−1, f0 , B0)
11 y = gau s s i a n ( x , 1)
12 z = b e r n o u i l l i ( p r o p o r t i o n ( x , y ) )
13 i f ( z == 0) :
14 r e t u r n x
15 e l s e :
16 r e t u r n y
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Probabilistic Programming

Semantics



Problems in semantics
• Prove formally the correspondence between algorithms,

implementations and mathematics.
• Prove that two programs have equivalent behavior

Operational Semantics describes how probabilistic programs compute.

Proba(M,N) is the probability p that M reduces to N in one step,
M p−→ N defined by induction on the structure of M:

• (λx .M)N 1−→ M[N/x ] • coin
1/2−→ 0 • coin

1/2−→ 1 . . .

Denotational Semantics describes what probabilistic programs compute

JMK is a probabilistic distribution, if M is a closed ground type program.

• If M has type nat, then JMK a discrete distribution over integers
• If M has type real, then JMK a continuous distribution over reals
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Operational Semantics on an example
(Borgström-Dal Lago-Gordon-Szymczak ICFP’16)

de f addCoins ( ) :
a = co in
b = co in
c = co in
re turn ( a + b + c )

• (λx .M)N 1−→ M[N/x ]

• coin
1/2−→ 0

• coin
1/2−→ 1 . . .

addCoins ( )
1−→

a = co in
b = co in
c = co in
( a + b + c )

1/2−→
a = 0
b = co in
c = co in
( a + b + c )

1/2−→
a = 0
b = 1
c = co in
( a + b + c )

1/2−→
a = 0
b = 1
c = 1
( a + b + c )

1−→
b = 1
c = 1
( 0 + b + c )

1−→ c = 1
( 0 + 1 + c )

1−→ ( 0 + 1 + 1 )
1−→ 2

8
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Operational Semantics

Proba∞(M,N) is the proba. that M reduces to N in any number of steps

Behavioral equivalence:

M1 ' M2 iff ∀C [ ], Proba∞(C [M1], 0) = Proba∞(C [M2], 0)

1 de f addCoins1 ( ) :
2 a = co i n
3 b = co i n
4 c = co i n
5 r e t u r n ( a + b + c )

1 de f addCoins2 ( ) :
2 b = co i n
3 a = co i n
4 c = co i n
5 r e t u r n ( a + b + c )

1 de f i n f e r 1 ( f0 , B0) :
2 r e j e c t i o n ( gue s s e r , ch e cke r ( f0 , B0) ) :
3

4 de f i n f e r 2 ( f0 , B0) :
5 me t r o p o l i s ( f0 , B0 , 1000)

9



Denotational Semantics A crucial challenge

" The developers of probabilistic programming languages need to ensure
that the implementation of compilers, optimizers, and inference
algorithms do not have bugs." (van de Meent-Paige-Yang-Wood 2018)

Denotational semantics allows to define the mathematical meaning of
every probabilistic program.

Problem: Measurable sets and measurable functions are not
suitable to interpret higher order functional probabilistic programming
languages.

The evaluation map ev : F(R,R)× R→ R with ev(f , r) = f (r) is not
measurable whatever measurable sets we put on the set F(R,R) of
measurable functions between reals endowed with borel sets.

(Aumann 1961)
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Denotational Semantics A topic of active research

Semantics for HOPPL with continuous probability

• Quasi Borel Spaces
(Kammar-Staton+Heunen-Yang LICS’17, +Vakar POPL’19)

• Measurable postive Cones and Stable maps
(Ehrhard-Pagani-T. POPL’18)

• Ordered Banach Spaces and Regular maps
(Dahlqvist-Kozen POPL’20)

Applications

• Probabilistic programming inference via intensional semantics for FO
(Castellan-Paquet ESOP’19)

• Well-typed inference programs are sound by construction.
(Lew-Cusumano-Towner-Sherman-Carbin-Mansinghka POPL’20)

• Denotational semantics and program analysis for score estimators
(Lee-Yu-Rival-Yang POPL’20)
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Semantics of a Bayesian Network

P (S|W )

P (R|W )

P (G|S,R)

t f
[3/5 2/5]

[W\S t f

t 1/5 4/5
f 3/4 1/4

]

[W\R t f

t 4/5 1/5
f 1/10 9/10

]




S,R\G t f

t,t 19/20 1/20
t,f 9/10 1/10
f,t 4/5 1/5
f,f 0 1




Winter

Sprinkle

Rain

Grass

p(S) =

 ∑
a∈{t,f}

P(S|W )a,b · p(W )a


b∈{t,f}

12



Semantics of a Bayesian Network
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Semantics of a Bayesian Network

P (S|W )

P (R|W )

P (G|S,R)∆

t f
[3/5 2/5]

[W\W⊗W t,t t,f f,t f,f

t 1 0 0 0
f 0 0 0 1

]

[W\S t f

t 1/5 4/5
f 3/4 1/4

]

[W\R t f

t 4/5 1/5
f 1/10 9/10

]
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p(W ) ∆ (P(S|W )⊗ P(R|W )) P(G |S,R) = p(G)

(Jacobs-Kissinger-Zanasi FOSSACS’19)
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Denotational Semantics: (Danos-Ehrhard 2011)

Probabilistic Coherent Spaces (Pcoh) an adequate model of
probabilistic functional programming with discrete probability.

Object (|X | ,P (X ))
• the universe |X | is a (potentially infinite)

set of final states
• a set of vectors P (X ) ⊆ (R+)|X |

closure: P(X)⊥⊥ = P(X) where
∀P ⊆ (R+)|X |, P⊥ = {v ∈ (R+)|X | ; ∀u ∈ P,

∑
a∈|X | uava ≤ 1}

bounded covering:

∀a ∈ |X | , ∃v ∈ P(X) ; va 6= 0 and ∃p > 0, ; ∀v ∈ P (X) , va ≤ p.

Type
A,B ::= nat | A → B | . . . are interpreted by objects
JAK = (|A| ,P (A)) defined by induction on A.

• unit type 1: |1| = {()} and P (1) = [0, 1]
• B = 1⊕ 1: |B| = {t, f} and P (B) = {x · t + y · f | x + y ≤ 1}

p(W ) =
[
3/5, 2/5

]
∈ P (B).

• nat = 1⊕ nat: |nat| = N and P (nat) sub-proba distrib. over N
• B∗ = 1⊕ (B ⊗ B∗): |B∗| = {ε} ∪ {b1 · · · · · bn | n ∈ N, bi ∈ |B|} and

P (B∗) sub-probability distribution over words of booleans.
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Semantics: Probabilistic Coherent Spaces (Danos-Ehrhard 2011)

Morphism MX Y ∈ (R+)|X |×|Y | is a matrix

∀x ∈ P (X )
⊆(R+)|X|

, M·x =

∑
a∈|X |

Ma,b xa


b∈|Y |

∈ P (Y )
⊆(R+)|Y |

Program
M,N ::= x | λxA.M | (M)N | fix(M) | n | coin | . . .
are interpreted by morphisms, by induction on M

• if M : A, then JMK ∈ P (A)

JnK = (0, . . . , 1
n
, 0, . . . ) JcoinK = ( 12

0
, 12
1
, 0, . . . )

• if M : A→ B, then JMK : P (A)→ P (B) is a Taylor series

if M : 1→ 1, then JMK is smooth real function from [0, 1] to [0, 1]
if M : nat ( nat, then JMK is a sub-stochastic matrix

14
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Probabilistic Coherent Spaces

Sound: Deterministic case: if M → N, then JMK = JNK.

JMK =
∑

N
Proba(M,N)JNK

Adequate: If M close term of type nat, then JMKn = Proba∞(M, n)
(Danos-Ehrhard 2011) JMK sub-proba distrib. on N.

Fully abstract: JMK = JNK iff M ' N
(Ehrhard-Pagani-T. POPL’14) Based on Taylor series

This Full Abstraction result generalizes to quantum programming.
(Clairambault-De Visme POPL’20)

CBPV: For every algebraic type X , the duplication ∆X

X

X

is valid.

(Ehrhard-T. 2019)

15



Differential Programming

Semantics



Semantics of Differential Programming

Basic ingredient in Pcoh is that JMK is a Taylor series. This is actually
the case in many quantitative semantics stemming from linear logic
account of resource consumption. (Girard 1987)

Zoology of topological vector spaces that are semantics of HOPL:

Köthe spaces (Ehrhard 2002), Finiteness spaces (Ehrhard 2005), Convenient
vector spaces (Blute-Ehrhard-T. 2012), Mackey-complete vector spaces
(Kerjean-T. 2018).

Ingredients

• Programs are smooth maps,
• Programs are Taylor series
• Derivative operator is a map in the model
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From semantics to syntax

Differential lambda-calculus (Ehrhard-Regnier 2003)

f(x)

f(x0) +
f
′ (x0)(x

− x0)

x0

D(λx .M)N → λx .(∂M
∂x N)

Linearization of the application.

Taylor expansion (Ehrhard-Regnier 2006)

f (x) =
∞∑

n=0

f (n)(0)
n! xn

λ-calculus TE−−→ Resource calculus
M N < s > [t1, . . . , tn]

Application (Barbarossa-Manzonetto POPL’20)

A theory of approximation of programs based on resource consumption.
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Differential Programming

Automatic Differentiation



Automatic Differentiation on computational graphs

· sin−

x1

x2

z1 z2 y

JGK(x1, x2) = sin((x1−x2)2)

JGK(5, 2) = 0.412 ∇JGK = (−5.467, 5.467)

Forward propagation: compute (si , 0) by evaluation and composition.

Backward propagation: compute (si , αi ) using chain rule

∂f (v1, . . . , vn)
∂x =

n∑
i=1

∂f
∂vi
· ∂vi
∂x and zi =

(
si , βi + ∂y

∂zi
· αi

)
z2 = (9, 0+cos(9)·1) z1 = (3, 0+3·−0.911) z1 = (3, 3·−0.911+3·−0.911)
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Compositional backpropagation (Brunel-Mazza-Pagani POPL’20)

Linear substitution calculus: (Accatoli 2012)

• HOPPL with explicit linear substitution
• well suited for fine grain complexity analysis
• no recursion or conditional

Linear negation of real: ∂y
∂v is a linear map from R→ R.

• delimited continuations (Wang et al ICFP’19)

• backpropagators (Pearlmutter-Siskind 2008)

Backpropagation

• program transformation on programs of type real

• correspond to usual algorithm on computational graphs

Backpropagation is sound, efficient and compositional.
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Formalized Reverse derivative (Abadi-Plotkin POPL’20)

Language: first order with fixpoints, conditions and reverse derivatives

A,B ::= real | 1 | A× B
M,N, L ::= x | r | f (M) | fix(f ) | M · rdL(x .N) | if B then M else N | . . .

Traces with no application, fixpoints, conditions or reverse derivatives

Operational Semantics formalizing trace based differentiation

• Transformation of programs into trace programs
• Reverse derivative as an operator on traces
• Evaluation

Denotational Semantics: if (x<0) then 0 else x

• Types as ordered sets with properties from domain theory
• Programs as differentiable partial functions defined on open domains

Sound and adequate model
20



Differential Programming

Mixing with Probabilistic Programming



Derivative of probabilistic Programs (Ehrhard FSCD’19)

Real functions are maps from 1 to 1 in Pcoh:

F = fix f1→1 λx1 if coin then () else x; f(x)

Taylor series φ = JF K : [0, 1]→ [0, 1]

∀x ∈ [0, 1], φ(x) =
∞∑

n=0
an xn

φ(x) = 1
2 + 1

2xφ(φ(x)) = 1−
√
1− x . 1

Analysis of compilation an the probability that F () uses its argument
exactly n times to produce an output.

Derivative φ′(1) =
∑∞

n=0 nan is the expectation of the number of times
F will use its argument for producing its input.

F (1) converges almost surely with an ∞ expected computation time.
21



Conclusion

Summary

Formalizing compilers is a crucial challenge to avoid generating bugs.

Semantics allows to prove that program transformations at play in
probabilistic and differential programming are correct.

Future works

• How to characterize inference approximations.
• Use the semantics tools for certification and proofs.

Related works

• Semantics of derivation potentially mixed with probability.
• Probabilistic distributed computing.

PIHOC-PPS-DIAPASoN workshop Paris, Feb 26 to 28, 2020
Program semantics and formal methods for probabilistic programming,
statistical learning, differential and approximate computing.

(organized by Dal Lago-Ehrhard-Pagani) 22
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