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Deep Learning Success Stories

Ingredients for success
1. Abundance of (labeled) data and compute 
2. A well-defined general notion of utility

14M images (ImageNet)
Annotations available

Very large corpora of text 
(can self-supervise)

4.9M games (Self-play)
Clear definition of success 

Computer Vision Natural Language Reinforcement Learning



Do we still need models?

The Bitter Lesson 

Rich Sutton, March 13, 2019 

The biggest lesson that can be read 
from 70 years of AI research is that 
general methods that leverage 
computation are ultimately the most 
effective, and by a large margin. 

Do we still need models or  
just more data and compute? 

Max Welling, April 20, 2019 

When you need to generalize to  
new domains, i.e. extrapolate away  
from the data, you will need a  
generative model

https://staff.fnwi.uva.nl/m.welling/
wp-content/uploads/Model-versus-
Data-AI-1.pdf

http://www.incompleteideas.net/
IncIdeas/BitterLesson.html
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Do we still need models?



When are models useful?
Recommendation

Large collection of 
small-data problems

We need inductive biases that 
1. Improve generalization 
2. Safe-guard against overconfident predictions

Science & Engineering

High quality models 
and/or limited data

Autonomous Vehicles

Generalization to 
long tail events



Deep Probabilistic Models

Deep Learning
• High-capacity models 
• Scalable to large datasets 
• Easy to try new models

Probabilistic Programming
• Programs as inductive biases 
• Structured, interpretable 
• Also easy to try new models

SGD + AutoDiff  
(very general)

Monte Carlo Methods
(more model specific)

Stochastic Variational Inference
(learn proposals using neural networks)



Structured Variational Autoencoders

[Kingma, Mohamed, Jimenez-Rezende, Welling, NIPS 2014]

Infer y from pixels x, 
and z from y and x
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Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
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By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133
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This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)

q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141
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Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�

�
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�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151
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Figure 1: Semi-supervised learning in structured variational autoencoders, illustrated on MNIST
digits. Top-Left: Generative model. Bottom-Left: Recognition model. Middle: Stochastic com-
putation graph, showing expansion of each node to its corresponding sub-graph. Generative-model
dependencies are shown in blue and recognition-model dependencies are shown in orange. See
Section 2.2 for a detailed explanation. Right: learned representation.

2 Framework and Formulation

VAEs [16, 27] are a class of deep generative models that simultaneously train both a probabilistic
encoder and decoder for a elements of a data set D = {x1, . . .xN}. The central analogy is that
an encoding z can be considered a latent variable, casting the decoder as a conditional probability
density p✓(x|z). The parameters ⌘✓(z) of this distribution are the output of a deterministic neural
network with parameters ✓ (most commonly MLPs or CNNs) which takes z as input. By placing a
weak prior over z, the decoder defines a posterior and joint distribution p✓(z | x) / p✓(x | z)p(z).
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N

Inference in VAEs can be performed using a variational method that approximates the
posterior distribution p✓(z | x) using an encoder q�(z | x), whose parameters ��(x) are
the output of a network (with parameters �) that is referred to as an “inference network”
or a “recognition network”. The generative and inference networks, denoted by solid
and dashed lines respectively in the graphical model, are trained jointly by performing
stochastic gradient ascent on the evidence lower bound (ELBO) L(�, ✓; D)  log p✓(D),

L(�, ✓; D) =
NX

n=1

L(�, ✓;xn) =
NX

n=1

Eq�(z|xn)[log p✓(x
n | z) + log p(z) � log q�(z|xn)]. (1)

Typically, the first term Eq�(z|xn)[log p✓(xn | z)] is approximated by a Monte Carlo estimate and the
remaining two terms are expressed as a divergence �KL(q�(z|xn)kp(z)), which can be computed
analytically when the encoder model and prior are Gaussian.

In this paper, we will consider models in which both the generative model p✓(x,y, z) and the
approximate posterior q�(y, z | x) can have arbitrary conditional dependency structures involving
random variables defined over a number of different distribution types. We are interested in defining
VAE architectures in which a subset of variables y are interpretable. For these variables, we assume
that supervision labels are available for some fraction of the data. The VAE will additionally retain
some set of variables z for which inference is performed in a fully unsupervised manner. This is in
keeping with our central goal of defining and learning in partially-specified models. In the running
example for MNIST, y corresponds to the classification label, whereas z captures all other implicit
features, such as the pen type and handwriting style.

This class of models is more general than the models in the work by Kingma et al. [17], who consider
three model designs with a specific conditional dependence structure. We also do not require p(y, z)
to be a conjugate exponential family model, as in the work by Johnson et al. [14]. To perform
semi-supervised learning in this class of models, we need to i) define an objective that is suitable to
general dependency graphs, and ii) define a method for constructing a stochastic computation graph
[29] that incorporates both the conditional dependence structure in the generative model and that of
the recognition model into this objective.
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Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.
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likelihood p(ỹ | y) = �ỹ(y) to define densities139
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Figure 1: Semi-supervised learning in structured variational autoencoders, illustrated on MNIST
digits. Top-Left: Generative model. Bottom-Left: Recognition model. Middle: Stochastic com-
putation graph, showing expansion of each node to its corresponding sub-graph. Generative-model
dependencies are shown in blue and recognition-model dependencies are shown in orange. See
Section 2.2 for a detailed explanation. Right: learned representation.

2 Framework and Formulation

VAEs [16, 27] are a class of deep generative models that simultaneously train both a probabilistic
encoder and decoder for a elements of a data set D = {x1, . . .xN}. The central analogy is that
an encoding z can be considered a latent variable, casting the decoder as a conditional probability
density p✓(x|z). The parameters ⌘✓(z) of this distribution are the output of a deterministic neural
network with parameters ✓ (most commonly MLPs or CNNs) which takes z as input. By placing a
weak prior over z, the decoder defines a posterior and joint distribution p✓(z | x) / p✓(x | z)p(z).
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Inference in VAEs can be performed using a variational method that approximates the
posterior distribution p✓(z | x) using an encoder q�(z | x), whose parameters ��(x) are
the output of a network (with parameters �) that is referred to as an “inference network”
or a “recognition network”. The generative and inference networks, denoted by solid
and dashed lines respectively in the graphical model, are trained jointly by performing
stochastic gradient ascent on the evidence lower bound (ELBO) L(�, ✓; D)  log p✓(D),
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Typically, the first term Eq�(z|xn)[log p✓(xn | z)] is approximated by a Monte Carlo estimate and the
remaining two terms are expressed as a divergence �KL(q�(z|xn)kp(z)), which can be computed
analytically when the encoder model and prior are Gaussian.

In this paper, we will consider models in which both the generative model p✓(x,y, z) and the
approximate posterior q�(y, z | x) can have arbitrary conditional dependency structures involving
random variables defined over a number of different distribution types. We are interested in defining
VAE architectures in which a subset of variables y are interpretable. For these variables, we assume
that supervision labels are available for some fraction of the data. The VAE will additionally retain
some set of variables z for which inference is performed in a fully unsupervised manner. This is in
keeping with our central goal of defining and learning in partially-specified models. In the running
example for MNIST, y corresponds to the classification label, whereas z captures all other implicit
features, such as the pen type and handwriting style.

This class of models is more general than the models in the work by Kingma et al. [17], who consider
three model designs with a specific conditional dependence structure. We also do not require p(y, z)
to be a conjugate exponential family model, as in the work by Johnson et al. [14]. To perform
semi-supervised learning in this class of models, we need to i) define an objective that is suitable to
general dependency graphs, and ii) define a method for constructing a stochastic computation graph
[29] that incorporates both the conditional dependence structure in the generative model and that of
the recognition model into this objective.
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Figure 2. (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and the label varied. (b) Exploration in
“style” space for a 2D latent gaussian random variable. Visual analogies for the SVHN data when (c) fully supervised, and (d) partially
supervised with just 100 labels/digit.
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which includes a term proportional to Lx|y in Equation (3)
but also now includes the classifier parameters �y . In the
backwards pass, gradients are computed by following stan-
dard automatic differentiation (AD) rules. When an ob-
served random variable is encountered, it is considered a
fixed input, and no gradient is passed backwards along its
sampler’s incoming edge. In Figure 1, this corresponds to
gradients along the arrow going backward from the sam-
pler S of the random variable Y to the block NN(�y).
The forward and backward passes of the algorithm are de-
scribed in Algorithm 1.

The formulation extends the capabilities for semi-
supervised learning in deep generative models in a num-
ber of ways. First, it allows us to perform semi-supervised
learning for models in which latent variables have con-
tinuous support. Second, it implicitly balances the trade-
off between learning a classifier or regressor and learn-
ing the generative model and the rest of the recognition
network. This is due to the fact that the discriminative
term, q�y (y | x) in our running example, is always present
and learned, in contrast to the hyper-parameter approach
in Kingma et al. (2014). Finally, it allows for flexible im-
plementation of a wide variety of models, separating out
the labelled and unlabelled variables, to derive a unified
objective over both the supervised and unsupervised cases.
When unsupervised, the value of the label yi is sampled
from q�y (y | x) and scored in that distribution, and when
supervised, it is set to the given value, and scored in the
same distribution. This is similar to approaches such as
Automatic Differentiation (AD) and Probabilistic Program
inference, where the choice of representation enables ease
of automation for a great variety of different cases.

3. Experiments

We evaluate our framework along a number of different
axes pertaining to its ability to learn disentangled represen-
tations through the provision of dependency structures for
the latents and minimal supervision. In particular, we eval-
uate its ability to (i) function as a classifier/regressor for
particular latents under the given dataset, (ii) learn the gen-
erative model in a manner that preserves the semantics of
the latents with respect to the data generated, and (iii) per-
form these tasks, in a flexible manner, for a variety of dif-
ferent models and data.

Note that in our experiments, we do not set out to explicitly
build the best possible classifier/regressor. Instead, being
able to classify or perform regression is a means to demon-
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Deep Probabilistic Programs

https://github.com/bleilab/edward

Edward

https://github.com/uber/pyro

PyroProbabilistic Torch

https://github.com/probtorch/probtorch

Inference Model (Encoder)Generative Model (Decoder)
class Encoder(torch.nn.Module):
def __init__(self, x_sz, h_sz, y_sz, z_sz):
# intializes layers: h, y_log_weights, ...
...

def forward(self, x, y_values=None):
q = probtorch.Trace()
h = self.h(x)
y = q.concrete(

self.y_log_weights(h), 0.66,
value=y_values, name='y')

hy = torch.cat([h, y], -1)
z = q.normal(self.z_mean(hy),

self.z_std(hy),
name='z')

return q

class Decoder(torch.nn.Module):
def __init__(self, x_sz, h_sz, y_sz, z_sz):
# intializes layers: h, x_mean, ...
...

def forward(self, x, q):
p = probtorch.Trace()
y = p.concrete(self.y_log_weights, 0.66,

value=q['y'], name='y')
z = p.normal(0.0, 1.0,

value=q['z'], name='z')
h = self.h(torch.cat([y, z], -1))
x = p.loss(self.bce,

self.x_mean(h), x,
name='x')

return p

Figure 2: Probabilistic Torch implementation of the model in Figure 1. The encoder and decoder initialize
network layers in the constructor, and implement a function forward that evaluates the network on inputs.
Probabilistic Torch provides a Trace data structure that stores random variable nodes. The encoder returns a
trace containing two such variables q['y'] and q['z'], whose values condition execution in the decoder.

This distribution is similarly parameterized by a neural network �z(x , y;�z) with parameters �z .

Given a set of images D ⇤ {x1 , . . . , xN }, we can train the generative and recognition models jointly by
optimizing an objective known as the evidence lower bound (ELBO) L(�, ✓;D)  log p(D)

L(�, ✓;D) ⇤ ÕN
n⇤1 L(�, ✓; xn) ⇤ ÕN

n⇤1 Eq�(y ,z |xn )
⇥
log p✓(xn , y , z) � log q�(y , z | xn)

⇤
. (1)

To optimize this objective, we need to compute an expectation with respect to q(y , z | xn), which is intractable.
Edward [90], Pyro [2], and Probabilistic Torch [95] provide methods to approximate the gradient of this
objective with a Monte Carlo estimate. To calculate this estimate, these libraries construct a stochastic
computation graph of the form shown in Figure 1, which draws reparameterized samples y , z ⇠ q(y , z | xn)
from the recognition model, and computes the log probabilities log p✓(xn , y , z) and log q�(y , z | xn).
Figure 2 shows the Probabilistic Torch implementation of the encoder and decoder, which are both standard
PyTorch networks. Probabilistic Torch extends PyTorch with a data structure that we refer to as a Trace,
which instantiates and stores named random variables. Forward execution of the encoder first generates a
sample q['y'] from a Concrete distribution (a continuous relaxation of the categorical distribution [51, 35])
and then generates q['z'] from a normal distribution. The returned trace q holds both the value and log
probability for each of the sampled variables. The values condition forward execution in the decoder, which
returns a second trace p. These two traces are then used to evaluate an objective function elbo(q, p), which
can be optimized with stochastic gradient descent in the usual manner.

The design shown in Figure 2 is nothing fancy, which is deliberate. Our goal with Probabilistic Torch [95]
is to provide a minimal set of abstractions that extend PyTorch with the functionality for deep generative
models: (1) distribution primitives to define random variable nodes (2) automated procedures to compute
variational objectives. Two libraries that provide similar constructs are Pyro [2], which is also based on PyTorch
[69], and Edward [90], which is implemented on top of TensorFlow [1]. Probabilistic Torch and Pyro were
developed independently, but have substantially similar designs. I expect that we will work closely with the
Pyro team in the future (see letter of collaboration). The main difference with respect to Edward lies in the
deep learning frameworks upon which these libraries are built. TensorFlow models compile to a static graph,
whereas PyTorch model are dynamic in the sense that the computation graph is constructed at run time
using a tape-based automatic differentiation system [5]. That said, the distinction between TensorFlow and
PyTorch based systems will likely be less prominent in the future, since support for dynamic execution is
also under development for TensorFlow [82]. For this reason, I expect that innovations from the proposed
work will find their way into all three systems.
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y = q.concrete(

self.y_log_weights(h), 0.66,
value=y_values, name='y')
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Figure 2: Probabilistic Torch implementation of the model in Figure 1. The encoder and decoder initialize
network layers in the constructor, and implement a function forward that evaluates the network on inputs.
Probabilistic Torch provides a Trace data structure that stores random variable nodes. The encoder returns a
trace containing two such variables q['y'] and q['z'], whose values condition execution in the decoder.
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Figure 5: Left: MNIST and F-MNIST reconstructions for zd values ranging from -3 to 3. Rows
contain both different samples from the dataset and different dimensions d. Right: The mutual
information 2 for each individual dimension I(x; zd), ranked in ascending order, with the Concrete
variable shown last. The HFVAE prunes 3 continuous dimensions in MNIST and 4 in F-MNIST.
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Figure 6: Left: Manipulation of the thickness variable over the range -3 to 3. The �-VAE is not able
to maintain digit identity as we vary thickness. The HFVAE, which incorporates a discrete variable
into the prior is able to maintain the digit identity across the entire range. Right: Mutual information
between label y and individual dimensions of z.

term into the objective. In addition to VAEs, generative adversarial networks have also been leveraged
to learn disentangled representations. The InfoGAN Chen et al. [2016a] achieves disentanglement by
maximizing the mutual information between individual features and the data under the generative
model.
In settings where we are not primarily interested in inducing disentangled representations, the �-VAE
objective has also been used with � < 1 in order to increase the quality of reconstructions (see, e.g.,
[Alemi et al., 2016, Engel et al., 2017, Liang et al., 2018]). This also decreases the relative weight of
2 , but this in practice does not influence the learned representation in cases where I(x; z) saturates
anyway.

5 Experiments
To assess the quality of disentangled representations that the HFVAE induces, we evaluate a number
of tasks and datasets. We consider CelebA [Liu et al., 2015] and dSprites [Higgins et al., 2016]
as exemplars of datasets that are typically used to demonstrate general-purpose disentangling. As
specific examples of datasets that require a discrete variable, we consider MNIST [LeCun et al., 2010]
and F-MNIST [Xiao et al., 2017]. Finally, we consider an example that extends beyond image-based
domains by using the HFVAE objective to train neural topic models on the 20NewsGroups [Lang,

Table 1: Dimensionality of latent variables
VAE variants and the HFVAE.

VAE HFVAE
Normal Normal Concrete

MNIST 10 10 10
F-MNIST 10 10 10
dSprites 10 10 3
CelebA 20 20 2

Table 2: Disentanglement scores for the dSprites
dataset using the metrics proposed by Kim and
Mnih [2018] and Eastwood and Williams [2018].

Model Kim Eastwood

VAE 0.63 ±0.06 0.30 ±0.10
�-VAE (� 4.0) 0.63 ±0.10 0.41 ±0.11
�-TCVAE (� 4.0) 0.62 ±0.07 0.29 ±0.10
HFVAE (� 4.0, � 3.0) 0.63 ±0.08 0.39 ±0.16
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Style Variables Generalization

[Esmaeli, Wu, Jain, Bozkurt, Siddharth, Paige, Brooks, Dy, van de Meent, AISTATS 2019]

Inductive Bias: Style features are uncorrelated with 
digit label, as well as with other features.



Model Composition

[Siddharth*, Paige*, van de Meent*, Desmaison, Wood, Goodman, Kohli, Torr, NIPS 2017]

Figure 1: A Semi-supervised Autoencoder for Multiple MNIST Digits (from [20])

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.
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class DigitEncoder(nn.Module):
def __init__(self, x_sz, h_sz, y_sz, z_sz):

# (defines networks l_h, l_y, and l_z)
...

def forward(self, x, label=None):
q = probtorch.Trace()
h = self.l_h(x)
y = q.concrete(

self.l_y['log_weights'](h), 0.66,
value=label, name='y')

z_inputs = torch.cat([y, h], -1)
z = q.normal(self.l_z['mean'](z_inputs),

self.l_z['std'](z_inputs),
name='z')

return q

class DigitDecoder(nn.Module):
def __init__(self, x_sz, h_sz, y_sz, z_sz):

# (defines networks eta_x and eta_h)
...

def forward(self, x, q):
p = probtorch.Trace()
y = p.concrete(torch.zeros(self.y_sz), 0.66,

value=q['y'], name='y')
z = p.normal(0.0, 1.0, size=self.z_sz,

value=q['z'], name='z')
h = self.eta_h(torch.cat([y, z], -1))
x = p.normal(self.eta_x['mean'](h),

self.eta_x['std'](h),
value=x, name='x')

return p

Probabilistic Torch implementation. The encoder and decoder initialize network layers in the constructor, and implement
a function forward that evaluates the network on inputs. Probabilistic Torch extends PyTorch with a Trace data structure
that stores random variable nodes. The encoder returns a trace containing two such variables q['y'] and q['z'], whose
values condition execution in the decoder.
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Figure 4: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

Note that in the recognition model (Fig. 4), the lighting l is a latent variable with continuous domain,
and one that we partially supervise. Further, we encode identity i as a categorical random variable,
instead of constructing a pixel-wise surface-normal map (each assumed to be independent Gaussian)
as is customary. This formulation allows us to address the task of predicting identity directly, instead
of applying surrogate evaluation methods (e.g. nearest-neighbour classification based on inferred
reflectance). Figure 5 presents both qualitative and quantitative evaluation of the framework to jointly
learn both the structured recognition model, and the generative model parameters.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 4.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [11]
(plot asymptotes)

� 30 � 10

Figure 5: Left: Exploring the generative capacity of the supervised model showing the input image,
its reconstruction, and reconstructions where the identity and lighting is varied given a fixed (inferred)
value of the other latent variables. Right: Classification and regression error rates for the identity
and lighting latent variables, fully-supervised, and semi-supervised (with 6 labelled example images
for each of the 38 individuals, a supervision rate of � = 0.5, and � = 10). Classification is a direct
1-out-of-38 choice, whereas for the comparison, error is a nearest-neighbour loss based on the inferred
reflectance. Regression loss for lighting is measured as angular distance.
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Figure 4: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

Note that in the recognition model (Fig. 4), the lighting l is a latent variable with continuous domain,
and one that we partially supervise. Further, we encode identity i as a categorical random variable,
instead of constructing a pixel-wise surface-normal map (each assumed to be independent Gaussian)
as is customary. This formulation allows us to address the task of predicting identity directly, instead
of applying surrogate evaluation methods (e.g. nearest-neighbour classification based on inferred
reflectance). Figure 5 presents both qualitative and quantitative evaluation of the framework to jointly
learn both the structured recognition model, and the generative model parameters.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 4.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
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Figure 5: Left: Exploring the generative capacity of the supervised model showing the input image,
its reconstruction, and reconstructions where the identity and lighting is varied given a fixed (inferred)
value of the other latent variables. Right: Classification and regression error rates for the identity
and lighting latent variables, fully-supervised, and semi-supervised (with 6 labelled example images
for each of the 38 individuals, a supervision rate of � = 0.5, and � = 10). Classification is a direct
1-out-of-38 choice, whereas for the comparison, error is a nearest-neighbour loss based on the inferred
reflectance. Regression loss for lighting is measured as angular distance.
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Model Composition for Multiple MNIST digits. In this model architecture, the encoder uses a recurrent network to repeat-
edly identify regions of interest until a stochastic stopping condition is reached, and calls the model for individual digits to
infer the digit label y k and style variable zk for each region.
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Figure 1: A Semi-supervised Autoencoder for Multiple MNIST Digits (from [20])

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.
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class DigitEncoder(nn.Module):
def __init__(self, x_sz, h_sz, y_sz, z_sz):

# (defines networks l_h, l_y, and l_z)
...

def forward(self, x, label=None):
q = probtorch.Trace()
h = self.l_h(x)
y = q.concrete(

self.l_y['log_weights'](h), 0.66,
value=label, name='y')

z_inputs = torch.cat([y, h], -1)
z = q.normal(self.l_z['mean'](z_inputs),

self.l_z['std'](z_inputs),
name='z')

return q

class DigitDecoder(nn.Module):
def __init__(self, x_sz, h_sz, y_sz, z_sz):

# (defines networks eta_x and eta_h)
...

def forward(self, x, q):
p = probtorch.Trace()
y = p.concrete(torch.zeros(self.y_sz), 0.66,

value=q['y'], name='y')
z = p.normal(0.0, 1.0, size=self.z_sz,

value=q['z'], name='z')
h = self.eta_h(torch.cat([y, z], -1))
x = p.normal(self.eta_x['mean'](h),

self.eta_x['std'](h),
value=x, name='x')

return p

Probabilistic Torch implementation. The encoder and decoder initialize network layers in the constructor, and implement
a function forward that evaluates the network on inputs. Probabilistic Torch extends PyTorch with a Trace data structure
that stores random variable nodes. The encoder returns a trace containing two such variables q['y'] and q['z'], whose
values condition execution in the decoder.
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Figure 4: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

Note that in the recognition model (Fig. 4), the lighting l is a latent variable with continuous domain,
and one that we partially supervise. Further, we encode identity i as a categorical random variable,
instead of constructing a pixel-wise surface-normal map (each assumed to be independent Gaussian)
as is customary. This formulation allows us to address the task of predicting identity directly, instead
of applying surrogate evaluation methods (e.g. nearest-neighbour classification based on inferred
reflectance). Figure 5 presents both qualitative and quantitative evaluation of the framework to jointly
learn both the structured recognition model, and the generative model parameters.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 4.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
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3.5% (± 3.4) 17.6% (± 1.8)
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Figure 5: Left: Exploring the generative capacity of the supervised model showing the input image,
its reconstruction, and reconstructions where the identity and lighting is varied given a fixed (inferred)
value of the other latent variables. Right: Classification and regression error rates for the identity
and lighting latent variables, fully-supervised, and semi-supervised (with 6 labelled example images
for each of the 38 individuals, a supervision rate of � = 0.5, and � = 10). Classification is a direct
1-out-of-38 choice, whereas for the comparison, error is a nearest-neighbour loss based on the inferred
reflectance. Regression loss for lighting is measured as angular distance.
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Figure 4: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

Note that in the recognition model (Fig. 4), the lighting l is a latent variable with continuous domain,
and one that we partially supervise. Further, we encode identity i as a categorical random variable,
instead of constructing a pixel-wise surface-normal map (each assumed to be independent Gaussian)
as is customary. This formulation allows us to address the task of predicting identity directly, instead
of applying surrogate evaluation methods (e.g. nearest-neighbour classification based on inferred
reflectance). Figure 5 presents both qualitative and quantitative evaluation of the framework to jointly
learn both the structured recognition model, and the generative model parameters.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 4.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
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Figure 5: Left: Exploring the generative capacity of the supervised model showing the input image,
its reconstruction, and reconstructions where the identity and lighting is varied given a fixed (inferred)
value of the other latent variables. Right: Classification and regression error rates for the identity
and lighting latent variables, fully-supervised, and semi-supervised (with 6 labelled example images
for each of the 38 individuals, a supervision rate of � = 0.5, and � = 10). Classification is a direct
1-out-of-38 choice, whereas for the comparison, error is a nearest-neighbour loss based on the inferred
reflectance. Regression loss for lighting is measured as angular distance.
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Idea: Embed model for individual MNIST digits 
in a recurrent model for multiple object detection 
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Learn aspect-based representations of  
users, items, and reviews (fully unsupervised)

[Esmaeli, Huang, Wallace, van de Meent, AISTATS 2019]

Example: Modeling Aspects in Reviews



Example: Modeling Aspects in Reviews

[Esmaeli, Huang, Wallace, van de Meent, AISTATS 2019]

Amber brown in color with very little head but a 
nice ring. Nicely carbonated. Smells like a camp 
fire, malts have a good sweet character with an 
abundance of smoke. Taste is quite good with 
smokiness being pungent but not overwelming. 
A sweet tasting bock with smokiness coming 
through around mid drink with a smooth mellow 
finish. A good warming smoky beer.

Aspects: Look, Mouthfeel, Aroma, Taste, Overall

Data: Beer reviews



Example: Modeling Aspects in Reviews
Manuscript under review by AISTATS 2019

Appearance Aroma-Taste Palate Semantic
golden black roasted citrus mouthfeel mouthfeel lagers try
yellow tans coffee grapefruit bodied watery heineken hype
white glass vanilla pine smooth rjt macro recommend
orange pour chocolate hops carbonation bodied import overall
hazy head bourbon lemon medium refreshing euro founders
color pitch oak floral drinkability carbonation lager favorite
gold lacing malts clove drinkable crisp bmc stouts

copper color sweet malt alcohol dry worse stout
straw brown aroma aroma finish finish bad ipa
amber ginger malt grass mouth thirst skunky cheers

Food Service Ambiance Payment
rice pepperoni bagel service friendly walls card minutes

chicken provolone eggs friendly service love debit card
sauce mozzarella hash staff staff restaurant stamp seated

shrimp bagel scrambled attentive baristas located minutes table
pork onions brown food helpful wall receipt debit
fried mushrooms ham helpful employees decor cash waited
beef arugula lox server customer hidden register asked

noodles knots benedict atmosphere barista ceiling cards wait
spicy artichoke poached great clean gem order gratuity

salmon cheese capers knowledgeable rude lighting cashier told

Table 5: Top 10 words of VALDA traiend on BeerAdvocate (top) and the yelp restaurants (bottom).

20000 to 30000. We also filtered the reviews to only keep
items and users with at least 5 reviews.

5.2 Baselines

We compare our model with several baselines. We attempted
to include a diverse set of models that includes probabilistic,
VAE-based, and aspect-based models. We also include a
simple version of our own model which we call variational
review LDA (VRLDA) which is implemented the same
as VALDA but without the aspects. In other words, the
representation is only a flat K dimensional vector. The full
list of baselines are: LDA [17], Local-LDA [18], HFT [35],
FM [32], NVDM [27], and ProdLDA [28].

5.3 Interpretablity

We show the top-10 topics of some of the aspects for the
BeerAdvocate and Yelp data in Table 5. It can be observed
that the words associated with sub-aspects are clearly re-
lated with each other. For example in the beer dataset, the
sub-aspect ”dark” contains words such as: ”black”, ”tans”,
and ”brown”. Furthermore, we can see that the sub-aspects
within every aspect are also correlated with one another.
Coming back to the beer example, if we look at the sub-
aspect neighbours of ”dark”, we can see the sub-aspect
”yellow”. Note that the ”dark” and ”yellow” sub-aspects
are learned within the same aspect in our model. The same
pattern can also be observed in the Yelp restaurant results
where in a single aspect, we can recover sub-aspects corre-

sponding to food types, such as ”Chinese” food, ”fast” food,
and ”desserts”.

5.4 Quantitative Assessment

We now perform series of quantitative evaluations of our
model. We first show that we can successfully disentangle
different aspects at a sentence level. We evaluate this on
the two available annotated datasets CitySearch [56] and
BeerAdvocate [40]. As presented in Table 3, VALDA out-
performs other approaches in terms of both accuracy and
F1-score.

Next, we quantitatively evaluate the top-words learned in
sub-aspects. According to Lau et al. [57], NPMI is a good
metric for qualitative evaluation of topics in terms of match-
ing human judgment, thus we adopt it in this work. We
measure NPMI both at sentence level and review level to
take both aspects and sub-aspect into account. For every
baseline, we only compared at the input-level that it was
trained on. For example, LDA is trained at a review level
while Local-LDA is trained at a sentence level. The results
are shown in Table 4. We can see that VALDA performs
significantly better than other baselines both at a sentence
level and at a review level. Note that we keep the over-
all number topics for all other baselines to be the same as
VALDA (A⇥K).

[Esmaeli, Huang, Wallace, van de Meent, AISTATS 2019]

Model learns topics that group into aspects  
(fully unsupervised)



Where are we today?

• Object recognition (~3 objects)  
[Eslami et al, NeurIPS 2016] 

• Object tracking (~3 objects, ~10 frames)  
[Kosiorek et al, NeurIPS 2018] 

• Product Reviews (~10 sentences, ~10 aspects)  
[Esmaeli et al, AISTATS 2019] 

Structured VAEs work well for O(10) variables



Still Hard: Clustering
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We need methods that scale to > O(100) variables
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Figure 1: Samples from the GMM and the DGMM. (a) GMM, the left column shows 5 test datasets with different number
of data points. The subsequent columns show inference results by RWS, followed by results after 4, 8 and 12 APG updates.
(b) DGMM, the left column shows 5 test datasets with different number of data points. The subsequent columns show the
inference results by RWS, followed by results after 3 and 6 APG updates. The right column shows reconstructions from the
learned generative model.

terize ring-shaped clusters. We show that we can train both
the generative model and inference model in an end-to-end
manner using APG methods, and that inference scales to
datasets containing up to 600 points. For both models we
quantify performance in terms of the effective sample size
(ESS) and the relative magnitude of the log joint. In our
third experiment, we consider an unsupervised model for
multiple bouncing MNIST data. We extend the task pro-
posed by Srivastava et al. [39] to consider up to 5 individual
digits, and learn both a deep generative model for videos
and an inference model that performs tracking.

Results on each of these tasks constitute a significant ad-
vance relative to the state of the art. Standard VAEs per-
form poorly at Gaussian mixture modeling tasks, and to
our knowledge there are no existing methods that scale to
a problem of the complexity of the DGMM for rings. In
the context of the unsupervised tracking model, APG easily
scales beyond previously reported results for a specialized
recurrent architecture [8]. APG is not only is able to scale
to models with higher complexity in these settings, but
also provides a general framework for performing inference
in models with global and local variables, which can be
adapted to a variety of model classes with comparative ease.

5.1 Gaussian Mixture Model
To evaluate whether APG samplers can learn the exact Gibbs
updates in conditionally conjugate models, we consider a

Gaussian mixture model

µi, ·i ≥ NormGamma(µ0, ‹0, –0, —0), i = 1, 2.., I

cn ≥ Cat(fi), xn|cn = i ≥ Norm(µi, 1/·i), n = 1, 2, .., N

In this model, the global variables zG = {µ1:I , ·1:I} are the
mean an precision for each mixture component, whereas
the local variables are the cluster assignments zL = {c1:N }.
Conditioned on cluster assignments, the Gaussian likelihood
p(x1:N | z1:N , µ1:I , ·1:I) is conjugate to a normal-gamma
prior p(µ1:I , ·1:I) with sufficient statistics T (xn, cn)

Ó
I[cn = i], I[cn = i] xn, I[cn = i] x2

n

--- i=1, 2, . . . , I
Ô

,

where I[zn = i] is an indicator function that evaluates to 1 if
the equality holds, and 0 otherwise.

We employ a variational distribution that updates the global
variables q„(µ, · | x, c) and the local variables q„(c |
x, µ, ·), using point-wise neural sufficient statistics mod-
eled after the ones in the analytical updates (see Appendix
E for architecture details).

We train our models on 20,000 datasets with I = 3 clusters
and N = 60 data points with fixed hyperparameters (µ0 =
0, ‹0 = 0.3, –0 = 2, —0 = 2). We use 20 GMM datasets
per batch, K = 10 sweeps, L = 10 particles, and Adam
(lr = 10≠4, —1 = 0.9, —2 = 0.99) for 200,000 iterations.

We compare the APG sampler to samples from a standard
encoder with MLP and LSTM architectures, which is trained

Data Inference



Paths towards Scaling up Inference

1. Generative Model: Exponential family + Neural likelihood  
2. Inference: Variational EM + Gradient descent

Figure 6: Predictions from an LDS SVAE fit to depth video. In each panel, the top is a sampled
prediction and the bottom is real data. The model is conditioned on observations to the left of the line.

(a) Extension into running

(b) Fall from rear

Figure 7: Examples of behavior states inferred from depth video. Each frame sequence is padded on
both sides, with a square in the lower-right of a frame depicting when the state is the most probable.

stepsize of 0.1, the standard gradient dynamics at step sizes of both 0.1 and 0.05 resulted in some
matrix parameters to be updated to indefinite values.

6.2 LDS SVAE for modeling video

We also apply an LDS SVAE to model depth video recordings of mouse behavior. We use the dataset
from Wiltschko et al. [3] in which a mouse is recorded from above using a Microsoft Kinect. We
used a subset consisting of 8 recordings, each of a distinct mouse, 20 minutes long at 30 frames per
second, for a total of 288000 video fames downsampled to 30 ⇥ 30 pixels.

We use MLP observation and recognition models with two hidden layers of 200 units each and a 10D
latent space. Fig. 5b shows images corresponding to a regular grid on a random 2D subspace of the
latent space, illustrating that the learned image manifold accurately captures smooth variation in the
mouse’s body pose. Fig. 6 shows predictions from the model paired with real data.

6.3 SLDS SVAE for parsing behavior

Finally, because the LDS SVAE can accurately represent the depth video over short timescales, we
apply the latent switching linear dynamical system (SLDS) model to discover the natural units of
behavior. Fig. 7 shows some of the discrete states that arise from fitting an SLDS SVAE with 30
discrete states to the depth video data. The discrete states that emerge show a natural clustering of
short-timescale patterns into behavioral units. See the supplementals for more.

7 Conclusion

Structured variational autoencoders provide a general framework that combines some of the strengths
of probabilistic graphical models and deep learning methods. In particular, they use graphical models
both to give models rich latent representations and to enable fast variational inference with CRF
structured approximating distributions. To complement these structured representations, SVAEs use
neural networks to produce not only flexible nonlinear observation models but also fast recognition
networks that map observations to conjugate graphical model potentials.
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[Johnson, Duvenaud, Wiltschko, Adams, Datta, NIPS 2016] [Wiltschko, Neuron 2015]

Example: Deep State Space Models for Activity Recognition in Mice



Amortized Gibbs Samplers

Intuition: Same idea as Gibbs sampling or Variational EM, 
but learn proposals for conditional updates

[Wu, Zimmermann, Sennesh, Le, van de Meent, arXiv 2019]



Minimizing the Inclusive KL
Variational Autoencoders

Wake-Sleep / EP Methods
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Minimizing the Inclusive KL
Variational Autoencoders

Wake-Sleep / EP Methods
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Difficult: Need to approximate  
expectation that depends on φ 

Solution: reparameterization 
or REINFORCE-style estimators

Easier: Expectation depends  
on θ (generative parameters) 

Solution: sample from pθ(z | x)



Reweighted Wake-sleep Style Methods
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Approximate with any importance sampler  
(lots of probabilistic programming methods available,  
 can use learned qφ(z | x) as proposals)



Reweighted Wake-sleep Style Methods

Importance Sampling

Use proposals qφ(z | x)  
to sample from pθ(z | x)

Variational Inference

Learn proposals qφ(z | x) 
using samples from pθ(z | x)

Better gradient estimates

Better proposals

Inference methods from  
probabilistic programming

Automatic differentiation  
and neural networks

[Bornschein and Bengio, ICLR 2015]

[Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]



Example: Unsupervised Tracking
Inferred Locations Reconstructions

Fully unsupervised (learns sub-model for MNIST)
Scales to O(100) frames and ~5 digits (possibly more)



Thinking Compositionally

Algorithm 1 Amortized Population Gibbs Sampling
1: for n in 1, . . . , N do . Loop over batch items
2: G� = 0 . Initialize gradient to 0
3: xn ⇠ pDATA(x)
4: for l in 1, . . . , L do . Initialize particles
5: zn,1,l ⇠ q�(z | xn)
6: wn,1,l  p✓(xn, zn,1,l) / q�(zn,1,l)

7: for k in 2, . . . ,K do . Loop over Gibbs updates
8: z̃, w̃ = zn,k�1, wn,k�1

9: for b in 1, . . . , B do . Loop over block updates
10: z̃, w̃ = RESAMPLE(z̃, w̃)
11: for l in 1, . . . , L do . Update particles
12: z̃0 lb ⇠ q�(· | xn, z̃l�b)

13: w̃l =
p✓(x

n,z̃0 l
b ,z̃l

�b) q�(z̃
l
b|x

n,z̃l
�b)

p✓(xn,z̃ l
b ,z̃

l
�b) q�(z̃

0 l
b |xn,z̃l

�b)
w̃l

14: z̃lb = z̃0 lb
15: G� = G� +

PL
l=1

w̃l
P

l0 w̃
l0

d
d� log q�(z̃lb | xn, z̃l�b) . Accumulate gradients

16: zn,k, wn,k = z̃, w̃

17: return G�, z, w . Output: Gradients, NKL weighted samples

4 Neural Sufficient Statistics131

Gibbs sampling strategies that sample from exact conditionals rely on conjugacy relationships.132

Typically, we assume a prior and likelihood that can both be expressed as exponential families133

p(x | z) = h(x) exp{⌘(z)> T (x)� logA(⌘(z))},
p(z) = h(z) exp{�>T (z)� logA(�)}.

In these densities h(·) is a base measure, T (·) is a vector of sufficient statistics, and A(·) is a log134

normalizer. The two densities are jointly conjugate when135

T (z) = (⌘(z),� logA(⌘(z))) (13)

In this case, the posterior distribution lies in the same exponential family as the prior136

p(z | x) / h(z) exp
�
(�1 + T (x))>T (z)� (�2 + 1) logA(⌘(z))

 
. (14)

Typically, the prior p(z | �) and likelihood p(x | z) are not jointly conjugate, but it is possible to137

identify conjugacy relationships at the level of invididual blocks of variables,138

p(zb | z�b, x) / h(zb) exp{(�b,1 + T (x, z�b))
>T (zb)� (�b,2 + 1) logA(⌘(zb))}. (15)

In the more general setting we consider here, these conjugacy relationships will typically not hold.139

However, we can still take inspiration from such relationships to design variational distributions that140

make use of conditional independencies in a model. We will assume that each of the approximate141

Gibbs updates q�(zb | x, z�b) is an exponential family, whose parameters are computed from a vector142

of prior parameters � and a vector of neural sufficient statistics T�(x, z�b)143

q�(zb | x, z�b) = p(zb | �+ T�(x, z�b)). (16)

This parameterization has a number of desirable properties. Exponential families are the largest-144

entropy distributions that match the moments defined by the sufficient statistics (see e.g. Wainwright145

and Jordan [2008]), which is helpful when minimizing the inclusive KL divergence. In exponential146

families it is also more straightforward to control the entropy of the variational distribution. In147

particular, we can initialize T�(x, z�b) to output values close to zero in order to ensure that we148

initially propose from a prior and/or regularize T�(x, z�b) to help avoid local optima.149

A particularly useful case arises in models where the data x = {x1, . . . , xM} are independent150

conditioned on z. In these models it is often possible to partition the latent variables z = {zG, zL}151

5

• APG combines inference from 
probabilistic programming 
with SGD-based methods 

• Known building blocks (SMC  
and RWS), but not trivial  
to combine correctly 

• Can we define compositional  
methods for importance sampling 
and gradient estimation?

What (inference) DSL could define this sampler?

[Wu, Zimmermann, Sennesh, Le, van de Meent, arXiv 2019]



Static vs Dynamic Models

Figure 1: A Semi-supervised Autoencoder for Multiple MNIST Digits (from [20])

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�

�
z,y | xi

�
.129

L
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log

p�

�
xi | z,y

�
p(z,y)

q�(z,y | xi)

�
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p�(x | y) is133

Lx|y
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This quantity can be optimized directly to learn model parameters � and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p�(x | y, z)p(y, z)

q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
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Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�

�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters � and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151
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Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.
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class DigitEncoder(nn.Module):
def __init__(self, x_sz, h_sz, y_sz, z_sz):

# (defines networks l_h, l_y, and l_z)
...

def forward(self, x, label=None):
q = probtorch.Trace()
h = self.l_h(x)
y = q.concrete(

self.l_y['log_weights'](h), 0.66,
value=label, name='y')

z_inputs = torch.cat([y, h], -1)
z = q.normal(self.l_z['mean'](z_inputs),

self.l_z['std'](z_inputs),
name='z')

return q

class DigitDecoder(nn.Module):
def __init__(self, x_sz, h_sz, y_sz, z_sz):

# (defines networks eta_x and eta_h)
...

def forward(self, x, q):
p = probtorch.Trace()
y = p.concrete(torch.zeros(self.y_sz), 0.66,

value=q['y'], name='y')
z = p.normal(0.0, 1.0, size=self.z_sz,

value=q['z'], name='z')
h = self.eta_h(torch.cat([y, z], -1))
x = p.normal(self.eta_x['mean'](h),

self.eta_x['std'](h),
value=x, name='x')

return p

Probabilistic Torch implementation. The encoder and decoder initialize network layers in the constructor, and implement
a function forward that evaluates the network on inputs. Probabilistic Torch extends PyTorch with a Trace data structure
that stores random variable nodes. The encoder returns a trace containing two such variables q['y'] and q['z'], whose
values condition execution in the decoder.
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Figure 4: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

Note that in the recognition model (Fig. 4), the lighting l is a latent variable with continuous domain,
and one that we partially supervise. Further, we encode identity i as a categorical random variable,
instead of constructing a pixel-wise surface-normal map (each assumed to be independent Gaussian)
as is customary. This formulation allows us to address the task of predicting identity directly, instead
of applying surrogate evaluation methods (e.g. nearest-neighbour classification based on inferred
reflectance). Figure 5 presents both qualitative and quantitative evaluation of the framework to jointly
learn both the structured recognition model, and the generative model parameters.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 4.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [11]
(plot asymptotes)

� 30 � 10

Figure 5: Left: Exploring the generative capacity of the supervised model showing the input image,
its reconstruction, and reconstructions where the identity and lighting is varied given a fixed (inferred)
value of the other latent variables. Right: Classification and regression error rates for the identity
and lighting latent variables, fully-supervised, and semi-supervised (with 6 labelled example images
for each of the 38 individuals, a supervision rate of � = 0.5, and � = 10). Classification is a direct
1-out-of-38 choice, whereas for the comparison, error is a nearest-neighbour loss based on the inferred
reflectance. Regression loss for lighting is measured as angular distance.
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Figure 4: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

Note that in the recognition model (Fig. 4), the lighting l is a latent variable with continuous domain,
and one that we partially supervise. Further, we encode identity i as a categorical random variable,
instead of constructing a pixel-wise surface-normal map (each assumed to be independent Gaussian)
as is customary. This formulation allows us to address the task of predicting identity directly, instead
of applying surrogate evaluation methods (e.g. nearest-neighbour classification based on inferred
reflectance). Figure 5 presents both qualitative and quantitative evaluation of the framework to jointly
learn both the structured recognition model, and the generative model parameters.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 4.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
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Figure 5: Left: Exploring the generative capacity of the supervised model showing the input image,
its reconstruction, and reconstructions where the identity and lighting is varied given a fixed (inferred)
value of the other latent variables. Right: Classification and regression error rates for the identity
and lighting latent variables, fully-supervised, and semi-supervised (with 6 labelled example images
for each of the 38 individuals, a supervision rate of � = 0.5, and � = 10). Classification is a direct
1-out-of-38 choice, whereas for the comparison, error is a nearest-neighbour loss based on the inferred
reflectance. Regression loss for lighting is measured as angular distance.
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def detect_objects(image, canvas): 
  objects = []  
  while not similar(image, objects): 
  objects.append( 
     next_object(image, canvas)) 

 return objects, canvas

def next_object(image, objects): 
  area = detect(image, objects) 
  features = recognize(image, area) 
  return area, features



Figure 1: A Semi-supervised Autoencoder for Multiple MNIST Digits (from [20])

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.
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Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.
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class DigitEncoder(nn.Module):
def __init__(self, x_sz, h_sz, y_sz, z_sz):

# (defines networks l_h, l_y, and l_z)
...

def forward(self, x, label=None):
q = probtorch.Trace()
h = self.l_h(x)
y = q.concrete(

self.l_y['log_weights'](h), 0.66,
value=label, name='y')

z_inputs = torch.cat([y, h], -1)
z = q.normal(self.l_z['mean'](z_inputs),

self.l_z['std'](z_inputs),
name='z')

return q

class DigitDecoder(nn.Module):
def __init__(self, x_sz, h_sz, y_sz, z_sz):

# (defines networks eta_x and eta_h)
...

def forward(self, x, q):
p = probtorch.Trace()
y = p.concrete(torch.zeros(self.y_sz), 0.66,

value=q['y'], name='y')
z = p.normal(0.0, 1.0, size=self.z_sz,

value=q['z'], name='z')
h = self.eta_h(torch.cat([y, z], -1))
x = p.normal(self.eta_x['mean'](h),

self.eta_x['std'](h),
value=x, name='x')

return p

Probabilistic Torch implementation. The encoder and decoder initialize network layers in the constructor, and implement
a function forward that evaluates the network on inputs. Probabilistic Torch extends PyTorch with a Trace data structure
that stores random variable nodes. The encoder returns a trace containing two such variables q['y'] and q['z'], whose
values condition execution in the decoder.
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Figure 4: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

Note that in the recognition model (Fig. 4), the lighting l is a latent variable with continuous domain,
and one that we partially supervise. Further, we encode identity i as a categorical random variable,
instead of constructing a pixel-wise surface-normal map (each assumed to be independent Gaussian)
as is customary. This formulation allows us to address the task of predicting identity directly, instead
of applying surrogate evaluation methods (e.g. nearest-neighbour classification based on inferred
reflectance). Figure 5 presents both qualitative and quantitative evaluation of the framework to jointly
learn both the structured recognition model, and the generative model parameters.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 4.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
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Figure 5: Left: Exploring the generative capacity of the supervised model showing the input image,
its reconstruction, and reconstructions where the identity and lighting is varied given a fixed (inferred)
value of the other latent variables. Right: Classification and regression error rates for the identity
and lighting latent variables, fully-supervised, and semi-supervised (with 6 labelled example images
for each of the 38 individuals, a supervision rate of � = 0.5, and � = 10). Classification is a direct
1-out-of-38 choice, whereas for the comparison, error is a nearest-neighbour loss based on the inferred
reflectance. Regression loss for lighting is measured as angular distance.
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Figure 4: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

Note that in the recognition model (Fig. 4), the lighting l is a latent variable with continuous domain,
and one that we partially supervise. Further, we encode identity i as a categorical random variable,
instead of constructing a pixel-wise surface-normal map (each assumed to be independent Gaussian)
as is customary. This formulation allows us to address the task of predicting identity directly, instead
of applying surrogate evaluation methods (e.g. nearest-neighbour classification based on inferred
reflectance). Figure 5 presents both qualitative and quantitative evaluation of the framework to jointly
learn both the structured recognition model, and the generative model parameters.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 4.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
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Figure 5: Left: Exploring the generative capacity of the supervised model showing the input image,
its reconstruction, and reconstructions where the identity and lighting is varied given a fixed (inferred)
value of the other latent variables. Right: Classification and regression error rates for the identity
and lighting latent variables, fully-supervised, and semi-supervised (with 6 labelled example images
for each of the 38 individuals, a supervision rate of � = 0.5, and � = 10). Classification is a direct
1-out-of-38 choice, whereas for the comparison, error is a nearest-neighbour loss based on the inferred
reflectance. Regression loss for lighting is measured as angular distance.
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edly identify regions of interest until a stochastic stopping condition is reached, and calls the model for individual digits to
infer the digit label y k and style variable zk for each region.
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def detect_objects(image, canvas): 
  objects = []  
  while not similar(image, objects): 
  objects.append( 
     next_object(image, canvas)) 

 return objects, canvas

def next_object(image, objects): 
  area = detect(image, objects) 
  features = recognize(image, area) 
  return area, features

Dynamic Computation Graphs: Number of variable nodes  
is data-dependent and/or stochastic

Static vs Dynamic Models



Figure 1: A Semi-supervised Autoencoder for Multiple MNIST Digits (from [20])
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Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.
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This quantity can be optimized directly to learn model parameters � and �z simultaneously via SGD.134
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Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143
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q�y (y | x) alongside the generative model parameters � and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z 
(h

an
dw

rit
in

g 
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.
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tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151
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class DigitEncoder(nn.Module):
def __init__(self, x_sz, h_sz, y_sz, z_sz):

# (defines networks l_h, l_y, and l_z)
...

def forward(self, x, label=None):
q = probtorch.Trace()
h = self.l_h(x)
y = q.concrete(

self.l_y['log_weights'](h), 0.66,
value=label, name='y')

z_inputs = torch.cat([y, h], -1)
z = q.normal(self.l_z['mean'](z_inputs),

self.l_z['std'](z_inputs),
name='z')

return q

class DigitDecoder(nn.Module):
def __init__(self, x_sz, h_sz, y_sz, z_sz):

# (defines networks eta_x and eta_h)
...

def forward(self, x, q):
p = probtorch.Trace()
y = p.concrete(torch.zeros(self.y_sz), 0.66,

value=q['y'], name='y')
z = p.normal(0.0, 1.0, size=self.z_sz,

value=q['z'], name='z')
h = self.eta_h(torch.cat([y, z], -1))
x = p.normal(self.eta_x['mean'](h),

self.eta_x['std'](h),
value=x, name='x')

return p

Probabilistic Torch implementation. The encoder and decoder initialize network layers in the constructor, and implement
a function forward that evaluates the network on inputs. Probabilistic Torch extends PyTorch with a Trace data structure
that stores random variable nodes. The encoder returns a trace containing two such variables q['y'] and q['z'], whose
values condition execution in the decoder.
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Figure 4: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

Note that in the recognition model (Fig. 4), the lighting l is a latent variable with continuous domain,
and one that we partially supervise. Further, we encode identity i as a categorical random variable,
instead of constructing a pixel-wise surface-normal map (each assumed to be independent Gaussian)
as is customary. This formulation allows us to address the task of predicting identity directly, instead
of applying surrogate evaluation methods (e.g. nearest-neighbour classification based on inferred
reflectance). Figure 5 presents both qualitative and quantitative evaluation of the framework to jointly
learn both the structured recognition model, and the generative model parameters.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 4.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [11]
(plot asymptotes)

� 30 � 10

Figure 5: Left: Exploring the generative capacity of the supervised model showing the input image,
its reconstruction, and reconstructions where the identity and lighting is varied given a fixed (inferred)
value of the other latent variables. Right: Classification and regression error rates for the identity
and lighting latent variables, fully-supervised, and semi-supervised (with 6 labelled example images
for each of the 38 individuals, a supervision rate of � = 0.5, and � = 10). Classification is a direct
1-out-of-38 choice, whereas for the comparison, error is a nearest-neighbour loss based on the inferred
reflectance. Regression loss for lighting is measured as angular distance.
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Figure 4: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

Note that in the recognition model (Fig. 4), the lighting l is a latent variable with continuous domain,
and one that we partially supervise. Further, we encode identity i as a categorical random variable,
instead of constructing a pixel-wise surface-normal map (each assumed to be independent Gaussian)
as is customary. This formulation allows us to address the task of predicting identity directly, instead
of applying surrogate evaluation methods (e.g. nearest-neighbour classification based on inferred
reflectance). Figure 5 presents both qualitative and quantitative evaluation of the framework to jointly
learn both the structured recognition model, and the generative model parameters.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 4.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
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Figure 5: Left: Exploring the generative capacity of the supervised model showing the input image,
its reconstruction, and reconstructions where the identity and lighting is varied given a fixed (inferred)
value of the other latent variables. Right: Classification and regression error rates for the identity
and lighting latent variables, fully-supervised, and semi-supervised (with 6 labelled example images
for each of the 38 individuals, a supervision rate of � = 0.5, and � = 10). Classification is a direct
1-out-of-38 choice, whereas for the comparison, error is a nearest-neighbour loss based on the inferred
reflectance. Regression loss for lighting is measured as angular distance.
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Generative Model Inference Model Recurrent Recognition Loop

Reconstructions

Decomposition

Model Composition for Multiple MNIST digits. In this model architecture, the encoder uses a recurrent network to repeat-
edly identify regions of interest until a stochastic stopping condition is reached, and calls the model for individual digits to
infer the digit label y k and style variable zk for each region.

4

Static Computation Graphs: Set of nodes and dependency 
graph determinable from static analysis.

def detect_objects(image): 
  objects = []  
  for k in range(3): 
    object = 
      next_object(image, canvas) 
   if not similar(image, objects): 
     objects.append(object) 
return objects

def next_object(image, objects): 
  area = detect(image, objects) 
  features = recognize(image, area) 
  return area, features

Static vs Dynamic Models
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Programs as Importance Samplers
WeightOutput Trace Program Input
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Programs as Importance Samplers

� f (⇠ ; x) =! f (⇠, x) pf (⇠ ; x)
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(measure semantics)

(likelihood weighting semantics)

[Ścibior, Kammar, Vákár, Staton, Yang, Cai, Ostermann, Heunen, Gharamani POPL 2018]

WeightOutput Trace Program Input
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Model Combinators

[Sennesh, Ścibior, Wu, van de Meent, (arXiv)]
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Idea: Static graphs with dynamic complexity



Sampling Primitives
3 Building Blocks for Importance Samplers

ProposeResampleMove



Inference Combinators

[Sennesh, Ścibior, Wu, van de Meent, (arXiv)]
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Idea: Change the evaluation (sampling) strategy,  
whilst leaving the target density unaffected. 



Dealing with Missing Variables

def g(x0): 
  u = sample(normal(enc_u(x0)), name='u') 
  x1 = sample(categorical(enc_1(u)), name='x1') 
  x2 = sample(normal(enc_2(u)), name='x2')

Proposal (variables: u, x1, x2)

� f (x1, x2, v ; x0) = pf (x0 | v) pf (v | x1, x2) pf (x1, x2)
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def f(x0): 
  x1 = sample(categorical(prior_1), name='x1') 
  x2 = sample(normal(prior_2), name=‘x2') 
  v = sample(normal(dec_v(x1, x2)), name='v') 
  observe(normal(dec_0(v)), x0, name='x0')

Target (variables: v, x1, x2)



Dealing with Missing Variables

def g(x0): 
  u = sample(normal(enc_u(x0)), name='u') 
  x1 = sample(categorical(enc_1(u)), name='x1') 
  x2 = sample(normal(enc_2(u)), name='x2')

def f(x0): 
  x1 = sample(categorical(prior_1), name='x1') 
  x2 = sample(normal(prior_2), name=‘x2') 
  v = sample(normal(dec_v(x1, x2)), name='v') 
  observe(normal(dec_0(v)), x0, name='x0')

p̃g(x1, x2, u ; x0) = pg(x1, x2 | u) pg(u ; x0) pf (v | x1, x2)
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Extended Target (variables: v, x1, x2, u)

Extended Proposal (variables: u, x1, x2, v)
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def g(x0): 
  u = sample(normal(enc_u(x0)), name='u') 
  x1 = sample(categorical(enc_1(u)), name='x1') 
  x2 = sample(normal(enc_2(u)), name='x2')

def f(x0): 
  x1 = sample(categorical(prior_1), name='x1') 
  x2 = sample(normal(prior_2), name=‘x2') 
  v = sample(normal(dec_v(x1, x2)), name='v') 
  observe(normal(dec_0(v)), x0, name='x0')

p̃g(x1, x2, u ; x0) = pg(x1, x2 | u) pg(u ; x0) pf (v | x1, x2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Extended Target (variables: v, x1, x2, u)

Extended Proposal (variables: u, x1, x2, v)
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Dealing with Missing Variables

wf =
�̃ f (x1, x2, v ; x0)
p̃g(x1, x2, u ; x0)

=
pf (x0 | v) pf (x1, x2)

pg(x1, x2 | u)
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Proposal Conditioned Target

Combinator

Combinators for Modeling and Inference 5

import pytorch as t
import torch.distributions as d

class Proposal(probtorch.Model):
def __init__(self):
# intialize neural layers
self.enc_u = ...
self.enc_x1 = ...
self.enc_x2 = ...

def forward(self, x0):
u = self.sample(t.Normal(*self.enc_u(x0)),

name=�u�)
x1 = self.sample(t.Categorical(self.enc_y(u)),

name=�x1�)
x2 = self.sample(t.Normal(*self.enc_z(u)),

name=�x2�)
return x1, x2

class Target(probtorch.Model):
def __init__(self):
# intialize neural layers
self.dec_v = ...
self.dec_x = ...

def forward(self, x0):
x1 = self.sample(d.Categorical(t.ones(10)),

name=�x1�)
x2 = self.sample(d.Normal(t.zeros(20),

t.ones(20)),
name=�x2�)

v = self.sample(d.Normal(*self.dec_v(x1, x2)),
name=�v�)

self.observe(d.Bernoulli(self.dec_x(v)),
value=x0�, name=�x0�)

return x1, x2

Fig. 1. Importance weighting with auxiliary variables. The generative model Target denotes an unnormal-
ized measure � (x1,x2,� | x0) = p(x0 | �)p(� | x1,x2)p(x1,x2). The inference model Proposal denotes a
probability measure q(x1,x2,u | x0) = q(x1,x2 | u)q(u | x0). Both models contain auxiliary variables, u and �
respectively, which correspond to stochastic intermediate representations of the input x. The importance
weight for this model w = p(x0 | �)p(x1,x2)/q(x1,x2 | u) can be defined by treating u and � as auxiliary
variables.

identical in the target and the proposal. In the general case, we will evaluate z, � ,w ;�(x) and
use � as a proposal for the target program f . To this end, we employ a conditioned evaluation
z 0, � 0,w 0 ;f (x ; � ). This conditioned evaluation reuses values stored in � when possible and samples
new variables from the prior,

A = dom(� ), �n ,dn = ����(f ,x0, [�1 7!x1, . . . ,�n�1 7!xn�1]), xn ⇠
(
�� (�n )(·) �n 2 A,

dn(·) �n < A,
� 0 = [�1 7!x1, . . . ,�N 7!xN ], ? = ����(f , � 0), w 0 = �f (� 0,x), z 0 = �f (� 0,x),

z 0, � 0,w 0 ;f (x ; � ), pf (� 0; � ,x0) =
Œ

n:�n<A dn(xn).
Given this defnition, we now de�ne the semantics of nested importance sampling as

z1, �1,w1 ;�(x0) z2, �2,w2 ;f (x0 ; �1)

z2, �2, w1 ·w2 ·
p�(�1 ; �2,x0)
��(�1 ; x0)

;propose(f ,�)(x0)

3.2 Model Combinators
NOTE: Everything form here on may need updates to notation.

3.3 Inference Combinators

4 AMORTIZED INFERENCE AND MODEL LEARNING
The abstraction of a probabilistic program as a properly weighted importance sampler naturally
lends itself to the setting where we would like to train a generative model or an inference model
using stochastic gradient descent. Variational autoencoders employ the objective in Equation ?? to
achieve both tasks by optimizing a single objective. However, we in general, we can use di�erent

Conditioned reverse

(ratio for variables common to both models)



Model Combinators

[Sennesh, Ścibior, Wu, van de Meent, (arXiv)]

Function Composition

Reduce / Fold over Sequence

define compositional model structure

z1, ⌧1, w1 ;g(x0 ; ⌧0(↵1)) z2, ⌧2, w2 ;f(z1 ; ⌧0(↵2))

z2, [↵1 7!⌧1,↵2 7!⌧2], w1 ·w2 ;compose(f,g)(x0 ; ⌧0)
<latexit sha1_base64="JSuV1lT5xw4uP+V4WLRnESWekxw="></latexit>

z1, ⌧1, w1 ;g(x0 ; ⌧0(↵1)) zn, ⌧n, wn ;f(zn�1 ; ⌧0(↵n)) for n = 2, . . . , N

zN , [↵1 7!⌧1, . . . ,↵N 7!⌧N ],
QN

n=1 wn ;reduce(f,g)((x1, . . . , xN ) ; ⌧0)
<latexit sha1_base64="CNlJ+0BzzdoyoQqS3n/Nn85Iq/o=">AAAKLHicjZbPb+Q0FMfTKSw7w68tHLmkdFaaSqFKWrZbAZWqXVbLaSgrurvSpIycxDMTxnGC7bQztdy/hxN/DOKCEFf+Bo48J5kliUNFqpm49ud93/Oznz1BRmIuXPf3rd72W2/fe+d+f/Due+9/8OGDnY9e8jRnIb4IU5Ky1wHimMQUX4hYEPw6YxglAcGvguVTPf7qCjMep/R7sc7wZYLmNJ7FIRLQNd3pLf0Az2MqM5amM8 </latexit>

zn, ⌧n, wn ;f(xn ; ⌧0(↵n)) for n = 1, . . . , N

(z1, . . . , zN ), [↵1 7!⌧1, . . . ,↵N 7!⌧N ],
QN

n=1 wn ;map(f)((x1, . . . , xN ) ; ⌧0)
<latexit sha1_base64="fzrh8L58mKqoBZn/D8i2iwjpoTs="></latexit>

Map over Sequence



Inference Combinators

Nested Importance Sampling

Importance Resampling

Application of a Transition Kernel

define a compositional sampling strategy     

z1, ⌧1, w1 ;g(x0) z2, ⌧2, w2 ;f(x0 ; ⌧1)

z2, ⌧2,
w1 · w2

!g(⌧1; ⌧2, x0)
;propose(f,g)(x0)

<latexit sha1_base64="Kk6ZedCe6ioT2YTap6rHM6H+Z7I="></latexit>

zk, ⌧k, wk ;f(↵, x) for k = 1, . . . ,K a1, . . . , aK ⇠ Discrete
�
w1, ..., wK

�

za
k

, ⌧a
k

, 1
K

P
k w

k ;resample(f,K)(↵,x) for k = 1, . . . ,K
<latexit sha1_base64="2Zzk5E51nxkS2lUnH7+1kdn3Me0="></latexit>

z1, ⌧1, w1 ;f(x0) z2, ⌧2, w2 ;g(z1) z3, ⌧3, w3 ;f(x0 ; ⌧2)

z3, ⌧3, w1 ·
w2 · w3

!g(⌧2; ⌧3, z1)
;move(f,g)(x0)

<latexit sha1_base64="4ay26WcyuSzzKeU4zqSy7yvL6dI="></latexit>

[Sennesh, Ścibior, Wu, van de Meent, (arXiv)]



Scaling up Amortized Inference

User-specified 
importance sampler 

(inference combinators)

User-specified 
variational objective 

(next talk)

Deep Generative Model 
program pθ(x, z)

Inference Model 
program qφ(z | x)

Better proposals

Importance Sampling

Use proposals qφ(z | x)  
to sample from pθ(z | x)

Variational Inference

Learn proposals qφ(z | x) 
using samples from pθ(z | x)

Better gradient estimates
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