


Towards Polyhedral Automatic
Differentiation

Jan Hiickelheim™  Navjot Kukreja'
December 14, 2019

"Imperial College London, UK
2Argonne National Laboratory, USA






Recap: Automatic differentiation (AD)

AD modes
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Figure 3.1: Basic Calculations of Tangents and Gradients

Andreas Griewank, Andrea Walther: Evaluating Derivatives

Forward or reverse?
« Infinitely many ways to implement primal, tangent, gradient
» Some of them are more useful than others

+ Success story of AD: take inspiration from given program, which is
hopefully a reasonable implementation of F

« In this work: Derive efficient gradient/tangent from efficient primal?



Motivation: Efficiency

”End of Moore’s law”

« Serial performance not growing for the last decade

» Code does not get faster just by waiting a few years

How to compute more?
« Adapt to different processors (GPU, TPU, ...)
» Expose and use parallelism
» Use cache hierarchy well, e.g. tiling, cache blocking

» Minimize passes over memory, e.g. fusion
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AD approaches

There are ways to categorize AD tools, for example:

High level

» ML frameworks, Halide, BLAS: define high-level operations, hide
implementation details under the hood

» AD operates on high level of abstraction

» Problem: Limited expressiveness, someone needs to write gradient
operators, composition of existing blocks is not always efficient

Low level
« Directly operate on low-level language (e.g. C)
» Very expressive, general

» Performance optimizations are not abstracted away, mixed into
computation



How should Automatic Differentiation respond?
» Can we maintain correctness?

« Can we maintain performance?



How should Automatic Differentiation respond?
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« Can we maintain performance?

Something we can not do:

« Just re-use the primal parallelization
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* In reverse-mode AD, shared read (ok) becomes shared write (not ok)



How should Automatic Differentiation respond?
» Can we maintain correctness?

+ Can we maintain performance?

Something we can not do:

« Just re-use the primal parallelization
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* In reverse-mode AD, shared read (ok) becomes shared write (not ok)

Another thing we can not do

« AD, then hand everything to optimizing compiler



Idea: Generate fast code inspired by primal

» Out of all possible codes, generate the one that closely mimics the
primal

» Get as much information as possible from primal, to parallelize the
derivative



Example: AD on a Stencil

Figure 1: AD on a gather produces a scatter



1D Stencil Example

iteration space

The Stencil is originally a gather operation

#pragma omp parallel for private (i)
for ( i=1; i<=n - 1; i++ ) {

r{i] = c[i]*(2.0%xu[i-1]-3.0%xuli]l+4~uli+1l]);



1D Stencil Example

iteration space
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AD converts it to a scatter

for (

ub[i-1] += 2.0 % c[i] * rb[i];
ub[i] -= 3.0 % c[i] * rb[i];
b[i+1] += 4.0 * c[i] * rb[i];

i=1; i<=n-1; i++ ) {
1

u



Can we auto-optimize?

for ( i=1; i<=n-1; i++ ) {
ub[i-1] += 2.0 * c[i] * rb[i];
ub[i] -= 3.0 % c[i] * rb[i];
ub[i+1] += 4.0 x c[i] * rb[i];

» Looked at in isolation, there are challenges:

* |s the trip count large enough to make parallelization profitable?
« Are ub, c, rb aliased?

* So many ways to transform this, which one is best?

» Would tiling help? What parameters are optimal?



PerforAD

» Prototype to generate gradient code that looks like primal code
* https://github.com/jhueckelheim/PerforAD

» Primal and gradient performance end up being similar

» Looks at loops in terms of iteration space, and statements

» We are free to restructure code, as long as statement is applied to same
overall iteration space



1D Stencil Example
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The scatter can be split into individual updates
for ( i=1; i<=n-1; i++ ) {
ub[i-1] += 2.0 * c[i] *= rb[i];

t

for ( i=1; i<=n-1; i++ ) {
ub[1i] -= 3.0 * c[i] » rb[i];

}

for ( i=1; i<=n-1; i++ ) {
ub[i+1] += 4.0x c[i] » rb[i];



1D Stencil Example
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Shift indices to write to loop counter element
for ( j=0; j<=n-2; J++ ) {
ub[j] += 2.0 % c[j+1] * rb[]j+1l];
}
for ( j=1; j<=n-1; Jj++ ) {
ub[j] -= 3.0 * c[3] * rb[il;
}
for ( j=2; j<=n; j++ ) |
ub[j] += 4.0 % c[j-1] = rb[]j-1];



1D Stencil Example
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#pragma omp parallel for private(j)

for ( j=2; j<=n-2; J++ ) {
uWb[j] += 2.0 * c[j+1] * rb[j+1];
ub[j] -= 3.0 x c[3] * rb[il;
ub[j] += 4.0 % c[j-1] = rb[j-1];
}

ub[0] += 2.0 * c[1] * rb[1l];
// ... other remainders: ub[l], ub[n-1], ub[n] 15



Higher dimensions
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In higher dimensions, we need remainders for edges and corners




Performance Results - Scalability

Scalability of the Wave Equation on Broadwell
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Figure 2: Speedups for the wave equation solver on a Broadwell processor,

using up to 12 threads. The conventinal adjoint code with manual

parallelisation does not scale at all. The primal and PerforAD-generated

adjoint benefit from using all 12 cores. 17



Other optimizations

» Good block sizes for primal and gradient are related. This should be
leveraged

— Primal runtime Gradient runtime
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Conclusion, Future Work

» We can automatically borrow ideas from primal to speed up gradient

+ Can also use this for reproducibility, roundoff

» We have a paper:
https://dl.acm.org/citation.cfm?doid=3337821.3337906

* Future work:

 Try this with more examples
« Try this with more diverse transformations
» Need a better API to make this useful for more people



Thank you

Thank you

Questions?
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