
0

Towards Polyhedral Automatic
Differentiation

Jan Hückelheim1,2 Navjot Kukreja1

December 14, 2019

1Imperial College London, UK
2Argonne National Laboratory, USA

0

1

Recap: Automatic differentiation (AD)

AD modes

Andreas Griewank, Andrea Walther: Evaluating Derivatives

Forward or reverse?

• Infinitely many ways to implement primal, tangent, gradient

• Some of them are more useful than others

• Success story of AD: take inspiration from given program, which is
hopefully a reasonable implementation of F

• In this work: Derive efficient gradient/tangent from efficient primal? 1

Motivation: Efficiency

”End of Moore’s law”

• Serial performance not growing for the last decade

• Code does not get faster just by waiting a few years

How to compute more?

• Adapt to different processors (GPU, TPU, ...)

• Expose and use parallelism

• Use cache hierarchy well, e.g. tiling, cache blocking

• Minimize passes over memory, e.g. fusion

2

AD approaches

There are ways to categorize AD tools, for example:

High level

• ML frameworks, Halide, BLAS: define high-level operations, hide
implementation details under the hood

• AD operates on high level of abstraction

• Problem: Limited expressiveness, someone needs to write gradient
operators, composition of existing blocks is not always efficient

Low level

• Directly operate on low-level language (e.g. C)

• Very expressive, general

• Performance optimizations are not abstracted away, mixed into
computation

3

Question:

How should Automatic Differentiation respond?

• Can we maintain correctness?

• Can we maintain performance?

4

Question:

How should Automatic Differentiation respond?

• Can we maintain correctness?

• Can we maintain performance?

Something we can not do:

• Just re-use the primal parallelization

c

b

Loop 1
c

b

a

Loop 2

• In reverse-mode AD, shared read (ok) becomes shared write (not ok)

5

Question:

How should Automatic Differentiation respond?

• Can we maintain correctness?

• Can we maintain performance?

Something we can not do:

• Just re-use the primal parallelization

c

b

Loop 1
c

b

a

Loop 2

• In reverse-mode AD, shared read (ok) becomes shared write (not ok)

Another thing we can not do

• AD, then hand everything to optimizing compiler

6

Idea: Generate fast code inspired by primal

• Out of all possible codes, generate the one that closely mimics the
primal

• Get as much information as possible from primal, to parallelize the
derivative

7

Example: AD on a Stencil

Figure 1: AD on a gather produces a scatter

8

1D Stencil Example

The Stencil is originally a gather operation

#pragma omp parallel for private(i)

for (i=1; i<=n - 1; i++) {

r[i] = c[i]*(2.0*u[i-1]-3.0*u[i]+4*u[i+1]);

}

9

1D Stencil Example

AD converts it to a scatter

for (i=1; i<=n-1; i++) {

ub[i-1] += 2.0 * c[i] * rb[i];

ub[i] -= 3.0 * c[i] * rb[i];

ub[i+1] += 4.0 * c[i] * rb[i];

}

10

Can we auto-optimize?

for (i=1; i<=n-1; i++) {

ub[i-1] += 2.0 * c[i] * rb[i];

ub[i] -= 3.0 * c[i] * rb[i];

ub[i+1] += 4.0 * c[i] * rb[i];

}

• Looked at in isolation, there are challenges:

• Is the trip count large enough to make parallelization profitable?

• Are ub, c, rb aliased?

• So many ways to transform this, which one is best?

• Would tiling help? What parameters are optimal?

11

PerforAD

• Prototype to generate gradient code that looks like primal code

• https://github.com/jhueckelheim/PerforAD

• Primal and gradient performance end up being similar

• Looks at loops in terms of iteration space, and statements

• We are free to restructure code, as long as statement is applied to same
overall iteration space

12

1D Stencil Example

The scatter can be split into individual updates

for (i=1; i<=n-1; i++) {

ub[i-1] += 2.0 * c[i] * rb[i];

}

for (i=1; i<=n-1; i++) {

ub[i] -= 3.0 * c[i] * rb[i];

}

for (i=1; i<=n-1; i++) {

ub[i+1] += 4.0* c[i] * rb[i];

}
13

1D Stencil Example

Shift indices to write to loop counter element

for (j=0; j<=n-2; j++) {

ub[j] += 2.0 * c[j+1] * rb[j+1];

}

for (j=1; j<=n-1; j++) {

ub[j] -= 3.0 * c[j] * rb[j];

}

for (j=2; j<=n; j++) {

ub[j] += 4.0 * c[j-1] * rb[j-1];

} 14

1D Stencil Example

#pragma omp parallel for private(j)

for (j=2; j<=n-2; j++) {

ub[j] += 2.0 * c[j+1] * rb[j+1];

ub[j] -= 3.0 * c[j] * rb[j];

ub[j] += 4.0 * c[j-1] * rb[j-1];

}

ub[0] += 2.0 * c[1] * rb[1];

// ... other remainders: ub[1], ub[n-1], ub[n] 15

Higher dimensions

In higher dimensions, we need remainders for edges and corners
16

Performance Results - Scalability

1 2 4 6 8 12

1

2

4
6
8

12

Number of Threads

S
pe

ed
up

Scalability of the Wave Equation on Broadwell

Primal
Adjoint
Atomics
PerforAD

Ideal

Figure 2: Speedups for the wave equation solver on a Broadwell processor,
using up to 12 threads. The conventinal adjoint code with manual
parallelisation does not scale at all. The primal and PerforAD-generated
adjoint benefit from using all 12 cores. 17

Other optimizations

• Good block sizes for primal and gradient are related. This should be
leveraged

18

Conclusion, Future Work

• We can automatically borrow ideas from primal to speed up gradient

• Can also use this for reproducibility, roundoff

• We have a paper:
https://dl.acm.org/citation.cfm?doid=3337821.3337906

• Future work:

• Try this with more examples
• Try this with more diverse transformations
• Need a better API to make this useful for more people

19

Thank you

Thank you

Questions?

20

References i

21

	References

