

Towards Polyhedral Automatic
Differentiation

Jan Hiickelheim™ Navjot Kukreja'
December 14, 2019

"Imperial College London, UK
2Argonne National Laboratory, USA

Recap: Automatic differentiation (AD)

AD modes

(x)

@ ¥ Z <

y=F (x)x H Y =F (0X ‘ X =y F (x ‘)Z =Y F (x)
scalar tangent vector tangent scalar gradient vector gradient

Figure 3.1: Basic Calculations of Tangents and Gradients

Andreas Griewank, Andrea Walther: Evaluating Derivatives

Forward or reverse?
« Infinitely many ways to implement primal, tangent, gradient
» Some of them are more useful than others

+ Success story of AD: take inspiration from given program, which is
hopefully a reasonable implementation of F

« In this work: Derive efficient gradient/tangent from efficient primal?

Motivation: Efficiency

”End of Moore’s law”

« Serial performance not growing for the last decade

» Code does not get faster just by waiting a few years

How to compute more?
« Adapt to different processors (GPU, TPU, ...)
» Expose and use parallelism
» Use cache hierarchy well, e.g. tiling, cache blocking

» Minimize passes over memory, e.g. fusion

tiling/blocking

1
1

parallelization f i)

=

1

fusion
———

-0

te
1

AD approaches

There are ways to categorize AD tools, for example:

High level

» ML frameworks, Halide, BLAS: define high-level operations, hide
implementation details under the hood

» AD operates on high level of abstraction

» Problem: Limited expressiveness, someone needs to write gradient
operators, composition of existing blocks is not always efficient

Low level
« Directly operate on low-level language (e.g. C)
» Very expressive, general

» Performance optimizations are not abstracted away, mixed into
computation

How should Automatic Differentiation respond?
» Can we maintain correctness?

« Can we maintain performance?

How should Automatic Differentiation respond?
» Can we maintain correctness?

« Can we maintain performance?

Something we can not do:

« Just re-use the primal parallelization
2 [

RARRAAA AR E AN ‘ W%m\j
b

* In reverse-mode AD, shared read (ok) becomes shared write (not ok)

How should Automatic Differentiation respond?
» Can we maintain correctness?

+ Can we maintain performance?

Something we can not do:

« Just re-use the primal parallelization
a [

ZHHHHH on1 € m/m* Loon 2

* In reverse-mode AD, shared read (ok) becomes shared write (not ok)

Another thing we can not do

« AD, then hand everything to optimizing compiler

Idea: Generate fast code inspired by primal

» Out of all possible codes, generate the one that closely mimics the
primal

» Get as much information as possible from primal, to parallelize the
derivative

Example: AD on a Stencil

Figure 1: AD on a gather produces a scatter

1D Stencil Example

iteration space

The Stencil is originally a gather operation

#pragma omp parallel for private (i)
for (i=1; i<=n - 1; i++) {

r{i] = c[i]*(2.0%xu[i-1]-3.0%xuli]l+4~uli+1l]);

1D Stencil Example

iteration space

ub | \\I W 4]
\

r—bl J\IP“ |q\IPV I

AD converts it to a scatter

for (

ub[i-1] += 2.0 % c[i] * rb[i];
ub[i] -= 3.0 % c[i] * rb[i];
b[i+1] += 4.0 * c[i] * rb[i];

i=1; i<=n-1; i++) {
1

u

Can we auto-optimize?

for (i=1; i<=n-1; i++) {
ub[i-1] += 2.0 * c[i] * rb[i];
ub[i] -= 3.0 % c[i] * rb[i];
ub[i+1] += 4.0 x c[i] * rb[i];

» Looked at in isolation, there are challenges:

* |s the trip count large enough to make parallelization profitable?
« Are ub, c, rb aliased?

* So many ways to transform this, which one is best?

» Would tiling help? What parameters are optimal?

PerforAD

» Prototype to generate gradient code that looks like primal code
* https://github.com/jhueckelheim/PerforAD

» Primal and gradient performance end up being similar

» Looks at loops in terms of iteration space, and statements

» We are free to restructure code, as long as statement is applied to same
overall iteration space

1D Stencil Example

iteration space I | iteration space iteration space

b [y INNEEEEAANARNNE R REAEEn

A\

o B L I L N I A LA LN

I I O I
| 1

The scatter can be split into individual updates
for (i=1; i<=n-1; i++) {
ub[i-1] += 2.0 * c[i] *= rb[i];

t

for (i=1; i<=n-1; i++) {
ub[1i] -= 3.0 * c[i] » rb[i];

}

for (i=1; i<=n-1; i++) {
ub[i+1] += 4.0x c[i] » rb[i];

1D Stencil Example

iteration space | | iteration space | iteration space
ub INNEEERNRNARRE Il4l4lfyyl/l
eoll PR Ly LT Tg 77T |
L 1 | I I

Shift indices to write to loop counter element
for (j=0; j<=n-2; J++) {
ub[j] += 2.0 % c[j+1] * rb[]j+1l];
}
for (j=1; j<=n-1; Jj++) {
ub[j] -= 3.0 * c[3] * rb[il;
}
for (j=2; j<=n; j++) |
ub[j] += 4.0 % c[j-1] = rb[]j-1];

1D Stencil Example

Ie===n§
LI T T T[]

left remainder intersection right remainder

ublin]

\

r_b| \

#pragma omp parallel for private(j)

for (j=2; j<=n-2; J++) {
uWb[j] += 2.0 * c[j+1] * rb[j+1];
ub[j] -= 3.0 x c[3] * rb[il;
ub[j] += 4.0 % c[j-1] = rb[j-1];
}

ub[0] += 2.0 * c[1] * rb[1l];
// ... other remainders: ub[l], ub[n-1], ub[n] 15

Higher dimensions

dhe gh
e I
. | | .
iy o LalE
.

e e o
dhefr db b

In higher dimensions, we need remainders for edges and corners

Performance Results - Scalability

Scalability of the Wave Equation on Broadwell

12 \ \ \ T 2
8| o -
6| o 7 .
. —e— Primal
S 4 s> | —=— Adjoint
© 2% .
o o Atomics
- 21" —+— PerforAD
-o- |deal
1 L] L i —a il
| - | | |
1 2 4 6 8 12

Number of Threads

Figure 2: Speedups for the wave equation solver on a Broadwell processor,

using up to 12 threads. The conventinal adjoint code with manual

parallelisation does not scale at all. The primal and PerforAD-generated

adjoint benefit from using all 12 cores. 17

Other optimizations

» Good block sizes for primal and gradient are related. This should be
leveraged

— Primal runtime Gradient runtime

100.000000

10.000000

Runtime

1.000000

0.100000
2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62
Block Size

Conclusion, Future Work

» We can automatically borrow ideas from primal to speed up gradient

+ Can also use this for reproducibility, roundoff

» We have a paper:
https://dl.acm.org/citation.cfm?doid=3337821.3337906

* Future work:

 Try this with more examples
« Try this with more diverse transformations
» Need a better API to make this useful for more people

Thank you

Thank you

Questions?

20

References i

21

	References

