The Differentiable Curry

Martin Abadi, Dan Belov, Gordon Plotkin, Richard Wei, Dimitrios Vytiniotis
DeepMind and Google Brain

thanks to the many from the Swift For Tensorflow and JAX teams

https://www.tensorflow.org/swift
https://github.com/google/jax

* Term due to Conal Elliott

DeepMind and Google Brain

Two starting ideas for this work

Reverse-Mode AD in a Functional Framework:
Lambda the Ultimate Backpropagator

BARAK A. PEARLMUTTER
Hamilton Institute

and

JEFFREY MARK SISKIND
Purdue University

We show that reverse-mode AD (A ic Di iation)—a ized gradi

operator—can be incorporated as a first-class function in an augmented lambda calculus, and
therefore into a functional-programming language. Clasure is achieved, in that the new operator
can be applied to any expression in the augmented language, yielding an expression in that
language. This requires the resolution of two major technical issues: (a) how to transform nested
lambda expressions, including those with free-variable references, and (b) how to support self
application of the AD machinery. AD transformations preserve certain complexity properties,
among them that the reverse phase of the reverse-mode AD transformation of a function have
the same temporal complexity as the original untransformed function. First-class unrestricted

AD operators increase the expressive power available to the numeric programmer, and may have
significant practical implications for the construction of numeric software that is robust, modular,
concise, correct, and efficient.

Categories and Subject Descriptors: D.3.2.a [Programming Languages]: Language Classifi-

cations { 1) L b [ical Analysis): Quadrature and
TR 4 i p

General Terms: Experi ion, Langu

Additional Key Words and Phrases: closures, derivatives, forward-mode AD, higher-order AD,

higher-order functional languages, Jacobian, program transformation, reflection

Automatic differe
other uses of large-
are complex and stateful, hindering deep understanding,
develops a simple,
algorithm is then specialized by varying the representation of derivatives. In particular, applying we
constructions to a
In contrast to common

usable directly from an ¢

The Simple Essence of Automatic Differentiation
Extended version®

Conal Elliott
Target
conal@conal.net

March, 2018

Abstract

tion. Commonly used RAD algorithms such as backpropa

ale optimiz

on.

mprovement, and parallel exec
oneralized AD algorithm calculated from a simple, natural specification.

ve representation)

ation (AD) in reverse mode (RAD) is a central component of deep learning and
ation, however,
This paper
The general

nown

Ids two RAD algorithms that are far simpler than previously known.
used RAD implementations, the algorithms defined here involve no graphs, tapes,
variables, partial derivatives, or mutation. They are inherently parallel-friendly, correct by construction, and
ting programming language with no need for new data types or programming
style. thanks to use of an AD-agnostic compiler plugin.

This paper: AD and Higher-Order Functions

Function arguments

func lstmCell(w : Params, state : Tensor, input : Tensor) -> T
func rnn(xs : Array<Tensor>, cell_fn) {
func go(idx, state) {
if (idx < xs.length) {
return go(idx+1, cell_fn(state, xs[idx]))
else return state

3
return loss_fn(go(0, 0.0))
3
model = ... // init parameters

for xs in minibatch {
grads = grad (Aps. rnn(xs, A h x. lstmCell(ps, h, x)) (model)
update(model, along: grads)

b

(higher-order functions)

— 1

Partial application, capturing
differentiable variables

ﬁﬂe today even in

Y
production languages:

https://www.tensorflow.org/swift

We will show how to do
combinator-style AD, and prove
something about what we did.

https://www.tensorflow.org/swift

AD by lifting primitives equipped with pullbacks

T mult(x,y) = x*y
f
S — Pullback of f, G[T] sometimes
Static compiler called “co-tangent” of T
transformation
. R !
] £ :
! ' multD(x,y) =
T —— 1 (x*y, \g=>(g*y, g*x))
T =>R GLT] G[R]

__

(fD : T ~> R) can be applied, or passed to other functions, as if it was an ordinary function T -> R

Reverse-mode AD in one slide

AD = composition of primitive pullbacks (chain

rule)

f1, f2 : Float => Float

func g(x:Float) : Float {

let v = f1(x);
let r = f2(v);
return r;
}
—_—>

func gD(x:Float) {
let (v, pb_f1) = f1D(x);
let (r, pb_f2) = f2D(v);

return (r, \gt ->

let gv = pb_f2(gt)
let gx = pb_f1(gv)
return gx

1))

-
o
-
(w)

Looks like a very “systematic” translation, let’s translate all programs to diagrams!

Recipe for AD: compile first to CCC algebra

id : T=>T func f(x, w, b) =
let rl = mult(x,w)
r2 = add(ril,b)

in r2

(f : S=>T)o(g:T=>R) :S=>R

An “ordinary”
program

roj_left : (A, B) => A -
ProJ_ () A categorlcaj

prod(fl : G => A, f2 : G => B) : G => (A,B)

proj_right : (A, B) => B program

prod(proj_left o mult,

curry(f : (T, S) =>R) : T => (S => R) proj_right) o add

eval : (T, T => R) => R NB: Nothing specific to AD: it’s all vanilla
lambda calculus and category theory.

Then implement T => S and combinators

id : T=>T

(f : S=>T)o (g : T=>R) :S=R
prod(fl : G => A, f2 : G => B) : G => (A,B)
proj_left : (A, B) => A

proj_right : (A, B) => B

curry(f : (T, S) => R) : T => (S => R)

eval : (T, T => R) => R

How to define type (T => S)

We need (T => S) to satisfy at least: Why only for first-order (FO) types?

) TFO ::= Float | Vector | (SF°, T0)
1. Given (h : TF=>Sf0) we can extract the
; : . TFO_ FO FO_\TFO
mathematical vip (h) T 2 (5 g (S >T)) A compromise, but useful for
differentiating end-to-end programs.

2. Ensure the implementation of the combinators

respects CCC laws (more on this in a bit)

Substantial work on “true” derivatives for h-o types:
e Cateqgorical Models for Simply Typed Resource Calculi
e In-progress work by Conal Elliott
e The differential lambda calculus, ccc semantics in: The
convenient space of global analysis

https://www.irif.fr/~ehrhard/pub/mfps10.pdf
http://conal.net/papers/higher-order-ad/higher-order-ad.pdf
https://core.ac.uk/download/pdf/82396223.pdf
https://www.mat.univie.ac.at/~michor/apbookh-ams.pdf
https://www.mat.univie.ac.at/~michor/apbookh-ams.pdf

Start with the intuitive definition

>

T =>5S T -> (S, G[S] -> G[T])
where
G[Float] = Float,

G[(T1,T2)] = (G[T1], G[T2])

Frequently used notion of “pullback” linear map, operator G[T] is often
called the “cotangent” space of T.

Main bulk of paper: how to implement curry

__

S => (T =>R)

S R
GIsT GIR] —
GLT GLT]
| [T] o GIR]
: (SfT) => R .-
B 1 s |\
<292
| GLS _
curry : ((T,S) =>R) -> (S => (T => R)) . [S] 22 | GLT=>R]

So that the implementation validates Req. 2 set previously!

Results (1): a simply-typed curry

s < o
curry :: ((T,S) =>R) -> (T => (S => R)) eVai ii (T=>5,T)=>5
curry f = new_f eval = ...
where
new_f :: T -> (S => R, G[S=>R] -> G[T]) GZ?{]) (.) :: (T=5S) >(S=>R) > (T =>R)
new_f t = €)=
let new._g :: S -> (R, GIR] -> G[S1) id 2 (T=T) g
id =

new_g s =
let (r,pullback) = f(t,s)
in (r, \gr -> snd (pullback gr))
new_pb :: G[S=>R] -> G[T]
new_pb ss_grs = List.sum $

List.map (\(s,gr) -> fst (snd (f(t,s)) ss_grs

in (new_g, new_pb)

proj_left :: ((T,S) =>T) =

proj_left = ...

‘\) proj_right :: ((T,S) =>S) g
;// proj_right = ... (1::?)
N\

- prod :: (X => A) -> (Y => B) -> ((X,Y) => (A,B))

Thm: we get a CCC

Thm: for f:(T,S) => R, h : T =>S =R
® (prod (curry f) id) . eval = f
e curry ((tuple h id) . eval) = h

prod = ..

Corollary: AD respects equational reasoning about programs
Corollary: compiler transformations preserve AD results

CCC theorems (back in lambda-calculus speak)

f :: (Float, Float) => Float fool (f, g) x = fool f x =
let y1 = f x let y1 = f x
fool (a, b) = y2 = g X y2 = f x
let g = Axb > f (a, xb) in y1 in y1 + y2
inghb
foo2 (a, b) = f (a, b) foo2 (f, g) x = f x foo2 f x = lety = f x
in (y +y)
Partial applications Forgetting results Summing results

vjp(fool) = vjp(foo2)

e Both forward-, and backward equivalent
e Need a notion of = that respects 0 and +

Results (I1): an efficient curry via dependent types

Aclosure f : T -> Sis really an object Closure<T, S> containing:

e An Environment Env of captured variables
e Astatic code pointer: Env -> T -> S

Key idea: every function has a different sensitivity,
depending on the environment it captured when allocated.

T1 =>T2 =
exists A. (x : T1)
% (y : T2). GLy

G[Lv:T1=>T21]-=
case v of
| exists A _ => A

->
: T2]1 -> (A, G[x :

D

G[T=>S] becomes dependent> GLf:T=>S]

Thm: we get a weak CCC
Open: do we get a strong CCC?

* |dea first appears in Pearlmutter & Siskind classic “Lambda the ultimate back-propagator” [TOPLAS’08] (no proofs)

G[\x -> y + x] = Float
G[\x -=>y + z + x] = (Float, Float)

Not just theory, curry is a Swift IL (SIL) instruction

3

struct LinLayer {

Tensor w;
func call(x:Tensor):Tensor { return (x*w); 3}

.. use site ..
linlayer.call(inputs);

= in the Swift IL (SIL) (simplifiing)

}

h
=

func func_1(x: Tensor, self : LinLayer) : Tensor {

return (x * self.w);

.. use site ..

papply(func_1, linlayer) // Tensor => Tensor
h(inputs)

If we have differentiated func_1 then we
want papply(func_1,1linlayer) to
return a (=>) value

Moreover, for training: we need to
backpropagate back through to

papply :

(((T,8) =>R), S) => (T => R)

linlayer, i.e need a
differentiable partial application

Dependent types? Swift is not dependently-typed ...

curry :: ((T,S) =>R) -> (T => (S => R)) 1)
curry (exists D. f) = pack () new_f r,//
where 48
new_f :: (t:T) -=> ((g : S => R), G[g:S=>R]1 -> (D, G[t:T1)

new_f t =
let g :: (s:S) -> (r:R, GLr:R] -> ((D,G[t:T1), G[s:S1)
gsS =

let (r, pullback) = f(t,s)
in (r, \gr -> let (cte,(ctt,cts)) = pullback gr
in ((cte,ctt), cts))
new_pb :: G[g:S=>R] -> (D, G[t:T])
new_pb env = env // Magic (but type-correct)!
in (pack [..] g, new_pb)

Proof guides the implementation of higher-order
functions in Swift for efficiency, memory safety,
and correctness.

G[S => T] = AnyDerivative // An “opaque” type with 0 and +
S=>T=(S -> (T, GLT] -> (AnyDerivative,G[S]))

curry :: ((T,S) => R) -> (T => (S => R))
curry (RSSO) - e _f
where \
new_f :: (lH - (Ells = r), c[flls=>r1 > &, clirD
new_f t =
let g :: (lls) > (R, o(lR] > (bseteFD, olflls)
gs = [
let (r, pullback) = f(t,s)
in (r, \gr -> let (cte,(ctt,cts)) = pullback gr
in ((cte,ctt), cts))
new_pb :: G[lls=>R1 > (&, G[[lTD)

new_pb env = env

in (_g, new_pb) AnyDerivative .i SWiﬂ

AnyDerivative

AnyDerivative

Artificial exponentials

Not truly higher-order
e Cannot do anything useful with vjp(h : (A => (B => C)) or
vijp(h : (A => B) => Q)

e But the loss is small, end-to-end programs are first-order, only
intermediates are higher-order!

e Cartesian closure enough to guarantee same behaviour as fully
inlined program

Hence we call the result of curry an “artificial exponential”. It has no
direct meaning as a derivative, but enables closure computationally!

The bigger picture and future work

Nothing really about AD! Bigger picture is this:

e Start with a CCC category C

e Define a (possibly dependent) pairing of each object with an affine space in
a category of affine spaces and linear maps, call that LMC

e We give a construction that runs € forward and returns backward (or forward,
similar techniques are applicable) arrows in the LMC, given the primivites.

AD just one application: dynamic symbolic analysis (with sets and union of
various sorts) might be another, forward or backward provenance analyses etc.
Future work!

Thanks!

e A combinator-based differentiation strategy

e A curry cooked two ways, correct for FO programs

e “Artificial exponentials® and cartesian closure for ensuring
conservative extension to higher-order types

e |deas being implemented in experimental Swift

Paper Draft Here

A call for careful formal treatment of AD: stability under program transformations,
perturbation confusion, HO-AD etc.

https://github.com/apple/swift/blob/master/docs/DifferentiableProgramming.md
https://dimitriv.github.io/papers/hoad-workshop.pdf

