
The Differentiable Curry
Martin Abadi, Dan Belov, Gordon Plotkin, Richard Wei, Dimitrios Vytiniotis

DeepMind and Google Brain

thanks to the many from the Swift For Tensorflow and JAX teams

https://www.tensorflow.org/swift
https://github.com/google/jax

The Differentiable Curry
Martin Abadi, Dan Belov, Gordon Plotkin, Richard Wei, Dimitrios Vytiniotis

DeepMind and Google Brain

Artificial Exponentials* for

Cartesian Closure

* Term due to Conal Elliott

Two starting ideas for this work

This paper: AD and Higher-Order Functions

func lstmCell(w : Params, state : Tensor, input : Tensor) -> Tensor { ... }

func rnn(xs : Array<Tensor>, cell_fn) {
 func go(idx, state) {
 if (idx < xs.length) {
 return go(idx+1, cell_fn(state, xs[idx]))
 else return state
 }
 return loss_fn(go(0, 0.0))
}

model = ... // init parameters
for xs in minibatch {
 grads = grad (λps. rnn(xs, λ h x. lstmCell(ps, h, x)) (model)
 update(model, along: grads)
}

Function arguments
(higher-order functions)

Partial application, capturing
differentiable variables

AD possible today even in
production languages:

https://www.tensorflow.org/swift

We will show how to do
combinator-style AD, and prove
something about what we did.

https://www.tensorflow.org/swift

AD by lifting primitives equipped with pullbacks

fT R

fDT
R

Static compiler
transformation

Pullback of f, G[T] sometimes
called “co-tangent” of T

(fD : T ~> R) can be applied, or passed to other functions, as if it was an ordinary function T -> R

G[R]G[T]

T -> R

T => R

mult(x,y) = x*y

multD(x,y) =
 (x*y, \g->(g*y, g*x))

NB: lots of other ways of describing this transformation with different tradeoffs.

Reverse-mode AD in one slide
AD = composition of primitive pullbacks (chain rule)

f1, f2 : Float => Float

func g(x:Float) : Float {
 let v = f1(x);
 let r = f2(v);
 return r;
}

f1D f2D

func gD(x:Float) {
 let (v, pb_f1) = f1D(x);
 let (r, pb_f2) = f2D(v);
 return (r, \gt ->
 let gv = pb_f2(gt)
 let gx = pb_f1(gv)
 return gx
 })
}

Looks like a very “systematic” translation, let’s translate all programs to diagrams!

Recipe for AD: compile first to CCC algebra

id : T => T

(f : S => T) o (g : T => R) : S => R

prod(f1 : G => A, f2 : G => B) : G => (A,B)

proj_left : (A, B) => A

proj_right : (A, B) => B

curry(f : (T, S) => R) : T => (S => R)

eval : (T, T => R) => R

func f(x, w, b) =
 let r1 = mult(x,w)
 r2 = add(r1,b)
 in r2

prod(proj_left o mult,
 proj_right) o add

NB: Nothing specific to AD: it’s all vanilla
lambda calculus and category theory.

An “ordinary”
program

A categorical
program

Then implement T => S and combinators

id : T => T
(f : S => T) o (g : T => R) : S => R
prod(f1 : G => A, f2 : G => B) : G => (A,B)
proj_left : (A, B) => A
proj_right : (A, B) => B
curry(f : (T, S) => R) : T => (S => R)
eval : (T, T => R) => R

How to define type (T => S)

We need (T => S) to satisfy at least:

1. Given (h : TFO=>SFO) we can extract the
mathematical vjp(h) : TFO->(SFO,(SFO->TFO))

2. Ensure the implementation of the combinators
respects CCC laws (more on this in a bit)

Why only for first-order (FO) types?

TFO ::= Float | Vector | (SFO, TFO)

A compromise, but useful for
differentiating end-to-end programs.

Substantial work on “true” derivatives for h-o types:
● Categorical Models for Simply Typed Resource Calculi
● In-progress work by Conal Elliott
● The differential lambda calculus, ccc semantics in: The

convenient space of global analysis

https://www.irif.fr/~ehrhard/pub/mfps10.pdf
http://conal.net/papers/higher-order-ad/higher-order-ad.pdf
https://core.ac.uk/download/pdf/82396223.pdf
https://www.mat.univie.ac.at/~michor/apbookh-ams.pdf
https://www.mat.univie.ac.at/~michor/apbookh-ams.pdf

Start with the intuitive definition

T => S ≜ T -> (S, G[S] -> G[T])

where

G[Float] = Float,

G[(T1,T2)] = (G[T1], G[T2])

Frequently used notion of “pullback” linear map, operator G[T] is often
called the “cotangent” space of T.

Main bulk of paper: how to implement curry

S

T

R

G[R]G[S]

G[T]

S

??

T R

?? G[R]G[T]

G[T=>R]G[S]

(S,T) => R

T => R

S => (T => R)

curry : ((T,S) => R) -> (S => (T => R))

So that the implementation validates Req. 2 set previously!

??

Results (I): a simply-typed curry

curry :: ((T,S) => R) -> (T => (S => R))
curry f = new_f
 where
 new_f :: T -> (S => R, G[S=>R] -> G[T])
 new_f t =
 let new_g :: S -> (R, G[R] -> G[S])
 new_g s =
 let (r,pullback) = f(t,s)
 in (r, \gr -> snd (pullback gr))
 new_pb :: G[S=>R] -> G[T]
 new_pb ss_grs = List.sum $
 List.map (\(s,gr) -> fst (snd (f(t,s)) ss_grs
 in (new_g, new_pb)

G[S => R] = AdditiveMap (S, G[R])

eval :: (T => S, T) => S
eval = ...

(.) :: (T => S) -> (S => R) -> (T => R)
(.) = ...

id :: (T => T)
id =

proj_left :: ((T,S) => T)
proj_left = ...

proj_right :: ((T,S) => S)
proj_right = ...

prod :: (X => A) -> (Y => B) -> ((X,Y) => (A,B))
prod = … Thm: for f:(T,S) => R, h : T => S => R

● (prod (curry f) id) . eval ≌ f
● curry ((tuple h id) . eval) ≌ h

Corollary: AD respects equational reasoning about programs
Corollary: compiler transformations preserve AD results

Thm: we get a CCC

CCC theorems (back in lambda-calculus speak)

f :: (Float, Float) => Float

foo1 (a, b) =
 let g = λxb → f (a, xb)
 in g b

foo2 (a, b) = f (a, b)

foo1 (f, g) x =
 let y1 = f x
 y2 = g x
 in y1

foo2 (f, g) x = f x

foo1 f x =
 let y1 = f x
 y2 = f x
 in y1 + y2

foo2 f x = let y = f x
 in (y + y)

Partial applications Forgetting results Summing results

vjp(foo1) ≅ vjp(foo2)

● Both forward-, and backward equivalent
● Need a notion of ≅ that respects 0 and +

Results (II): an efficient curry via dependent types
A closure f : T -> S is really an object Closure<T,S> containing:

● An Environment Env of captured variables

● A static code pointer: Env -> T -> S

G[T=>S] becomes dependent G[f:T=>S]
G[\x -> y + x] = Float
G[\x -> y + z + x] = (Float, Float)

* Idea first appears in Pearlmutter & Siskind classic “Lambda the ultimate back-propagator” [TOPLAS’08] (no proofs)

T1 => T2 =
 exists Δ. (x : T1) ->
 Σ (y : T2). G[y : T2] -> (Δ, G[x : T1])

G [v : T1 => T2] =
 case v of
 | exists Δ _ => Δ

Coq

Key idea: every function has a different sensitivity,
depending on the environment it captured when allocated.

Thm: we get a weak CCC
Open: do we get a strong CCC?

Not just theory, curry is a Swift IL (SIL) instruction
struct LinLayer {
 Tensor w;
 func call(x:Tensor):Tensor { return (x*w); }
}
… use site …
linlayer.call(inputs);

==
⇒ in the Swift IL (SIL) (simplifiing)
==
func func_1(x: Tensor, self : LinLayer) : Tensor {
 return (x * self.w);
}
… use site …
h = papply(func_1, linlayer) // Tensor => Tensor
r = h(inputs)

If we have differentiated func_1 then we
want papply(func_1,linlayer) to
return a (=>) value

papply : (((T,S) => R), S) => (T => R)

Moreover, for training: we need to
backpropagate back through to
linlayer, i.e need a
differentiable partial application

Dependent types? Swift is not dependently-typed …

curry :: ((T,S) => R) -> (T => (S => R))
curry (exists D. f) = pack () new_f
 where
 new_f :: (t:T) -> ((g : S => R), G[g:S=>R] -> (D, G[t:T])
 new_f t =
 let g :: (s:S) -> (r:R, G[r:R] -> ((D,G[t:T]), G[s:S])
 g s =
 let (r, pullback) = f(t,s)
 in (r, \gr -> let (cte,(ctt,cts)) = pullback gr
 in ((cte,ctt), cts))
 new_pb :: G[g:S=>R] -> (D, G[t:T])
 new_pb env = env // Magic (but type-correct)!
 in (pack [..] g, new_pb)

G[S => T] = AnyDerivative // An “opaque” type with 0 and +
S => T = (S -> (T, G[T] -> (AnyDerivative,G[S]))

curry :: ((T,S) => R) -> (T => (S => R))
curry (exists D. f) = pack () new_f
 where
 new_f :: (t:T) -> ((g : S => R), G[g:S=>R] -> (D, G[t:T])
 new_f t =
 let g :: (s:S) -> (r:R, G[r:R] -> ((D,G[t:T]), G[s:S])
 g s =
 let (r, pullback) = f(t,s)
 in (r, \gr -> let (cte,(ctt,cts)) = pullback gr
 in ((cte,ctt), cts))
 new_pb :: G[g:S=>R] -> (D, G[t:T])
 new_pb env = env
 in (pack [..] g, new_pb)

AnyDerivative

AnyDerivative

AnyDerivative

Proof guides the implementation of higher-order
functions in Swift for efficiency, memory safety,
and correctness.

Artificial exponentials
Not truly higher-order
● Cannot do anything useful with vjp(h : (A => (B => C)) or

vjp(h : (A => B) => C)

● But the loss is small, end-to-end programs are first-order, only
intermediates are higher-order!

● Cartesian closure enough to guarantee same behaviour as fully
inlined program

Hence we call the result of curry an “artificial exponential”. It has no
direct meaning as a derivative, but enables closure computationally!

The bigger picture and future work
Nothing really about AD! Bigger picture is this:

● Start with a CCC category C
● Define a (possibly dependent) pairing of each object with an affine space in

a category of affine spaces and linear maps, call that LMC
● We give a construction that runs C forward and returns backward (or forward,

similar techniques are applicable) arrows in the LMC, given the primivites.

AD just one application: dynamic symbolic analysis (with sets and union of
various sorts) might be another, forward or backward provenance analyses etc.

Future work!

Thanks!
● A combinator-based differentiation strategy
● A curry cooked two ways, correct for FO programs
● “Artificial exponentials” and cartesian closure for ensuring

conservative extension to higher-order types
● Ideas being implemented in experimental Swift

Paper Draft Here

A call for careful formal treatment of AD: stability under program transformations,
perturbation confusion, HO-AD etc.

https://github.com/apple/swift/blob/master/docs/DifferentiableProgramming.md
https://dimitriv.github.io/papers/hoad-workshop.pdf

